DOI QR코드

DOI QR Code

Lithocholic Acid Activates Mas-Related G Protein-Coupled Receptors, Contributing to Itch in Mice

  • Received : 2021.03.29
  • Accepted : 2021.06.01
  • Published : 2022.01.01

Abstract

The present study focused on lithocholic acid (LCA), a secondary bile acid that contributes to cholestatic pruritus. Although recent studies have found that LCA acts on MAS-related G protein-coupled receptor family member X4 (MRGPRX4) in humans, it is unclear which subtypes of MRGPRs are activated by LCA in mice since there is no precise ortholog of human MRGPRX4 in the mouse genome. Using calcium imaging, we found that LCA could activate mouse Mrgpra1 when transiently expressed in HEK293T cells. Moreover, LCA similarly activates mouse Mrgprb2. Importantly, LCA-induced responses showed dose-dependent effects through Mrgpra1 and Mrgprb2. Moreover, treatment with QWF (an antagonist of Mrgpra1 and Mrgprb2), YM254890 (Gαq inhibitor), and U73122 (an inhibitor of phospholipase C) significantly suppressed the LCA-induced responses, implying that the LCA-induced responses are indeed mediated by Mrgpra1 and Mrgprb2. Furthermore, LCA activated primary cultures of mouse sensory neurons and peritoneal mast cells, suggesting that Mrgpra1 and Mrgprb2 contribute to LCA-induced pruritus. However, acute injection of LCA did not induce noticeable differences in scratching behavior, implying that the pruritogenic role of LCA may be marginal in non-cholestatic conditions. In summary, the present study identified for the first time that LCA can activate Mrgpra1 and Mrgprb2. The current findings provide further insight into the similarities and differences between human and mouse MRGPR families, paving a way to understand the complex roles of these pruriceptors.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C1005865).

References

  1. Alemi, F., Kwon, E., Poole, D. P., Lieu, T., Lyo, V., Cattaruzza, F., Cevikbas, F., Steinhoff, M., Nassini, R., Materazzi, S., Guerrero-Alba, R., Valdez-Morales, E., Cottrell, G. S., Schoonjans, K., Geppetti, P., Vanner, S. J., Bunnett, N. W. and Corvera, C. U. (2013) The TGR5 receptor mediates bile acid-induced itch and analgesia. J. Clin. Invest. 123, 1513-1530. https://doi.org/10.1172/JCI64551
  2. Azimi, E., Reddy, V. B., Pereira, P. J. S., Talbot, S., Woolf, C. J. and Lerner, E. A. (2017) Substance P activates Mas-related G protein-coupled receptors to induce itch. J. Allergy Clin. Immunol. 140, 447-453.e3. https://doi.org/10.1016/j.jaci.2016.12.980
  3. Azimi, E., Reddy, V. B., Shade, K. C., Anthony, R. M., Talbot, S., Pereira, P. J. S. and Lerner, E. A. (2016) Dual action of neurokinin-1 antagonists on Mas-related GPCRs. JCI Insight 1, e89362.
  4. Carey, J. B., Jr., Wilson, I. D., Zaki, F. G. and Hanson, R. F. (1966) The metabolism of bile acids with special reference to liver injury. Medicine (Baltimore) 45, 461-470. https://doi.org/10.1097/00005792-196645060-00009
  5. Chen, J., Zhao, K. N. and Chen, C. (2014) The role of CYP3A4 in the biotransformation of bile acids and therapeutic implication for cholestasis. Ann. Transl. Med. 2, 7.
  6. Cipriani, S., Renga, B., D'Amore, C., Simonetti, M., De Tursi, A. A., Carino, A., Monti, M. C., Sepe, V., Zampella, A. and Fiorucci, S. (2015) Impaired itching perception in murine models of cholestasis is supported by dysregulation of GPBAR1 signaling. PLoS ONE 10, e0129866. https://doi.org/10.1371/journal.pone.0129866
  7. Dong, X., Han, S., Zylka, M. J., Simon, M. I. and Anderson, D. J. (2001) A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 106, 619-632. https://doi.org/10.1016/S0092-8674(01)00483-4
  8. Fickert, P., Fuchsbichler, A., Marschall, H. U., Wagner, M., Zollner, G., Krause, R., Zatloukal, K., Jaeschke, H., Denk, H. and Trauner, M. (2006) Lithocholic acid feeding induces segmental bile duct obstruction and destructive cholangitis in mice. Am. J. Pathol. 168, 410-422. https://doi.org/10.2353/ajpath.2006.050404
  9. Fisher, M. M., Magnusson, R. and Miyai, K. (1971) Bile acid metabolism in mammals. I. Bile acid-induced intrahepatic cholestasis. Lab. Invest. 25, 88-91.
  10. Green, D. P., Limjunyawong, N., Gour, N., Pundir, P. and Dong, X. (2019) A mast-cell-specific receptor mediates neurogenic inflammation and pain. Neuron 101, 412-420.e3. https://doi.org/10.1016/j.neuron.2019.01.012
  11. Han, S. K., Dong, X., Hwang, J. I., Zylka, M. J., Anderson, D. J. and Simon, M. I. (2002) Orphan G protein-coupled receptors MrgA1 and MrgC11 are distinctively activated by RF-amide-related peptides through the Galpha q/11 pathway. Proc. Natl. Acad. Sci. U.S.A. 99, 14740-14745. https://doi.org/10.1073/pnas.192565799
  12. Islam, M. N., Lee, K. W., Yim, H. S., Lee, S. H., Jung, H. C., Lee, J. H. and Jeong, J. Y. (2017) Optimizing T4 DNA polymerase conditions enhances the efficiency of one-step sequence- and ligationindependent cloning. Biotechniques 63, 125-130. https://doi.org/10.2144/000114588
  13. Jeong, J. Y., Yim, H. S., Ryu, J. Y., Lee, H. S., Lee, J. H., Seen, D. S. and Kang, S. G. (2012) One-step sequence- and ligation-independent cloning as a rapid and versatile cloning method for functional genomics studies. Appl. Environ. Microbiol. 78, 5440-5443. https://doi.org/10.1128/AEM.00844-12
  14. Lay, M. and Dong, X. (2020) Neural mechanisms of itch. Annu. Rev. Neurosci. 43, 187-205. https://doi.org/10.1146/annurev-neuro-083019-024537
  15. McNeil, B. D., Pundir, P., Meeker, S., Han, L., Undem, B. J., Kulka, M. and Dong, X. (2015) Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature 519, 237-241. https://doi.org/10.1038/nature14022
  16. Meixiong, J., Anderson, M., Limjunyawong, N., Sabbagh, M. F., Hu, E., Mack, M. R., Oetjen, L. K., Wang, F., Kim, B. S. and Dong, X. (2019a) Activation of mast-cell-expressed mas-related G-proteincoupled receptors drives non-histaminergic itch. Immunity 50, 1163-1171.e5. https://doi.org/10.1016/j.immuni.2019.03.013
  17. Meixiong, J., Vasavda, C., Green, D., Zheng, Q., Qi, L., Kwatra, S. G., Hamilton, J. P., Snyder, S. H. and Dong, X. (2019b) Identification of a bilirubin receptor that may mediate a component of cholestatic itch. Elife 8, e44116. https://doi.org/10.7554/elife.44116
  18. Meixiong, J., Vasavda, C., Snyder, S. H. and Dong, X. (2019c) MRGPRX4 is a G protein-coupled receptor activated by bile acids that may contribute to cholestatic pruritus. Proc. Natl. Acad. Sci. U.S.A. 116, 10525-10530. https://doi.org/10.1073/pnas.1903316116
  19. Perner, C., Flayer, C. H., Zhu, X., Aderhold, P. A., Dewan, Z. N. A., Voisin, T., Camire, R. B., Chow, O. A., Chiu, I. M. and Sokol, C. L. (2020) Substance P release by sensory neurons triggers dendritic cell migration and initiates the type-2 immune response to allergens. Immunity 53, 1063-1077.e7. https://doi.org/10.1016/j.immuni.2020.10.001
  20. Pradhananga, S. and Shim, W. S. (2015) Caffeic acid exhibits antipruritic effects by inhibition of multiple itch transmission pathways in mice. Eur. J. Pharmacol. 762, 313-321. https://doi.org/10.1016/j.ejphar.2015.06.006
  21. Ridlon, J. M., Harris, S. C., Bhowmik, S., Kang, D. J. and Hylemon, P. B. (2016) Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 7, 22-39. https://doi.org/10.1080/19490976.2015.1127483
  22. Sanjel, B. and Shim, W. S. (2020) Recent advances in understanding the molecular mechanisms of cholestatic pruritus: a review. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165958. https://doi.org/10.1016/j.bbadis.2020.165958
  23. Staudinger, J. L., Goodwin, B., Jones, S. A., Hawkins-Brown, D., MacKenzie, K. I., LaTour, A., Liu, Y., Klaassen, C. D., Brown, K. K., Reinhard, J., Willson, T. M., Koller, B. H. and Kliewer, S. A. (2001) The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc. Natl. Acad. Sci. U.S.A. 98, 3369-3374. https://doi.org/10.1073/pnas.051551698
  24. Subramanian, H., Gupta, K. and Ali, H. (2016) Roles of Mas-related G protein-coupled receptor X2 on mast cell-mediated host defense, pseudoallergic drug reactions, and chronic inflammatory diseases. J. Allergy Clin. Immunol. 138, 700-710. https://doi.org/10.1016/j.jaci.2016.04.051
  25. Tan, K. P., Wood, G. A., Yang, M. and Ito, S. (2010) Participation of nuclear factor (erythroid 2-related), factor 2 in ameliorating lithocholic acid-induced cholestatic liver injury in mice. Br. J. Pharmacol. 161, 1111-1121. https://doi.org/10.1111/j.1476-5381.2010.00953.x
  26. Thakare, R., Alamoudi, J. A., Gautam, N., Rodrigues, A. D. and Alnouti, Y. (2018) Species differences in bile acids I. Plasma and urine bile acid composition. J. Appl. Toxicol. 38, 1323-1335. https://doi.org/10.1002/jat.3644
  27. Tsvilovskyy, V., Solis-Lopez, A., Ohlenschlager, K. and Freichel, M. (2018) Isolation of peritoneum-derived mast cells and their functional characterization with Ca2+-imaging and degranulation assays. J. Vis. Exp. (137), 57222.
  28. Woolbright, B. L., Li, F., Xie, Y., Farhood, A., Fickert, P., Trauner, M. and Jaeschke, H. (2014) Lithocholic acid feeding results in direct hepato-toxicity independent of neutrophil function in mice. Toxicol. Lett. 228, 56-66. https://doi.org/10.1016/j.toxlet.2014.04.001
  29. Xu, G., Dai, M., Zheng, X., Lin, H., Liu, A. and Yang, J. (2020) Cholestatic models induced by lithocholic acid and alphanaphthylisothiocyanate: different etiological mechanisms for liver injury but shared JNK/STAT3 signaling. Mol. Med. Rep. 22, 1583-1593. https://doi.org/10.3892/mmr.2020.11210
  30. Yu, H., Zhao, T., Liu, S., Wu, Q., Johnson, O., Wu, Z., Zhuang, Z., Shi, Y., Peng, L., He, R., Yang, Y., Sun, J., Wang, X., Xu, H., Zeng, Z., Zou, P., Lei, X., Luo, W. and Li, Y. (2019) MRGPRX4 is a bile acid receptor for human cholestatic itch. Elife 8, e48431. https://doi.org/10.7554/elife.48431