DOI QR코드

DOI QR Code

Electrochemical Impedance Characteristics of a Low-Temperature Single Cell for CO2/H2O Co-Reduction to Produce Syngas (CO+H2)

  • Min Gwan, Ha (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Donghoon, Shin (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Jeawoo, Jung (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Emilio, Audasso (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Juhun, Song (School of Mechanical Engineering, Pusan National University) ;
  • Yong-Tae, Kim (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Hee-Young, Park (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Hyun S., Park (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Youngseung, Na (Department of Mechanical and Information Engineering, University of Seoul) ;
  • Jong Hyun, Jang (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
  • Received : 2022.05.30
  • Accepted : 2022.06.25
  • Published : 2022.11.30

Abstract

In this study, the electrochemical impedance characteristics of CO2/H2O co-reduction to produce CO/H2 syngas were investigated in a low-temperature single cell. The effect of the operating conditions on the single-cell performance was evaluated at different feed concentrations and cell voltages, and the corresponding electrochemical impedance spectroscopy (EIS) data were collected and analyzed. The Nyquist plots exhibited two semicircles with separated characteristic frequencies of approximately 1 kHz and tens of Hz. The high-frequency semicircles, which depend only on the catholyte concentration, could be correlated to the charge transfer processes in competitive CO2 reduction and hydrogen evolution reactions at the cathodes. The EIS characteristics of the CO2/H2O co-reduction single cell could be explained by the equivalent circuit suggested in this study. In this circuit, the cathodic mass transfer and anodic charge transfer processes are collectively represented by a parallel combination of resistance and a constant phase element to show low-frequency semicircles. Through nonlinear fitting using the equivalent circuit, the parameters for each electrochemical element, such as polarization resistances for high- and low-frequency processes, could be quantified as functions of feed concentration and cell voltage.

Keywords

Acknowledgement

This research was supported by the National R&D Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (2019M3E6A1063674, 2021M3D1A2051396). Moreover, this research was also supported by the Korea Institute of Science and Technology (No. 2E31871). Dr. Emilio Audasso was supported by the Brain Pool Program of the National Research Foundation of Korea (NRF) and was granted financial resources from the Ministry of Education, Science & Technology, Republic of Korea (2021H1D3A2A02083087). This work was supported by the 2022 sabbatical year research grant of the University of Seoul.

References

  1. W. C. Wang, Y. L. Yung, A. A. Lacis, T. Mo, and J. E. Hansen, Science, 1976, 194(4266), 685-690. https://doi.org/10.1126/science.194.4266.685
  2. D. A. Lashof and D. R. Ahuja, Nature, 1990, 344, 529-531. https://doi.org/10.1038/344529a0
  3. M. I. Hoffert, K. Caldeira, G. Benford, D. R. Criswell, C. Green, H. Herzog, A. K. Jain, H. S. Kheshgi, K. S. Lackner, J. S. Lewis, H. D. Lightfoot, W. Manheimer, J. C. Mankins, M. E. Mauel, L. J. Perkins, M. E. Schlesinger, T. Volk, and T. M. L. Wigley, Science, 2002, 298(5595), 981-987. https://doi.org/10.1126/science.1072357
  4. C. L. Quere, M. R. Raupach, J. G. Canadell, G. Marland, L. Bopp, P. Ciais, T. J. Conway, S. C. Doney, R. A. Feely, P. Foster, P. Friedlingstein, K. Gurney, R. A. Houghton, J. I. House, C. Huntingford, P. E. Levy, M. R. Lomas, J. Majkut, N. Metzl, J. P. Ometto, G. P. Peters, I. C. Prentice, J. T. Randerson, S. W. Running, J. L. Sarmiento, U. Schuster, S. Sitch, T. Takahashi, N. Viovy, G. R. van der Werf, and F. I. Woodward, Nat. Geosci., 2009, 2, 831-836. https://doi.org/10.1038/ngeo689
  5. K. Riahi, E. S. Rubin, M. R. Taylor, L. Schrattenholzer, and D. Hounshell, Energy Economics, 2004, 26(4), 539-564. https://doi.org/10.1016/j.eneco.2004.04.024
  6. J. C. Abanades, E. S. Rubin, M. Mazzotti, and H. J. Herzog, Energy Environ. Sci., 2017, 10(12), 2491-2499. https://doi.org/10.1039/c7ee02819a
  7. M. E. Dry, Catal. Today, 2002, 71(3-4), 227-241. https://doi.org/10.1016/S0920-5861(01)00453-9
  8. C. Delacourt, P. L. Ridgway, J. B. Kerr, and J. Newman, J. Electrochem. Soc., 2008, 155(1), B42.
  9. H. Xie, S. Chen, F. Ma, J. Liang, Z. Miao, T. Wang, H.-L. Wang, Y. Huang, and Q. Li, ACS Appl. Mater. Interfaces, 2018, 10(43), 36996-37004. https://doi.org/10.1021/acsami.8b12747
  10. Q. He, D. Liu, J. H. Lee, Y. Liu, Z. Xie, S. Hwang, S. Kattel, L. Song, and J. G. Chen, Angew. Chem. Int. Ed., 2020, 59(8), 3033-3037. https://doi.org/10.1002/anie.201912719
  11. Y. Liu, D. Tian, A. N. Biswas, Z. Xie, S. Hwang, J. H. Lee, H. Meng, and J. G. Chen, Angew. Chem. Int. Ed., 2020, 59(28), 11345-11348. https://doi.org/10.1002/anie.202003625
  12. Y. H. Chung, M. G. Ha, Y. Na, H. Y. Park, H. J. Kim, D. Henkensmeier, S. J. Yoo, J. Y. Kim, S. Y. Lee, S. W. Lee, H. S. Park, Y.-T. Kim, and J. H. Jang, Electroanalysis, 2019, 31(7), 1401-1408.
  13. Y. Chen, C. W. Li, and M. W. Kanan, J. Am. Chem. Soc., 2012, 134(49), 19969-19972. https://doi.org/10.1021/ja309317u
  14. W. Zhu, R. Michalsky, O. Metin, H. Lv, S. Guo, C. J. Wright, X. Sun, A. A. Peterson, S. Sun, J. Am. Chem. Soc., 2013, 135(45), 16833-16836. https://doi.org/10.1021/ja409445p
  15. H. Mistry, R. Reske, Z. Zeng, Z.-J. Zhao, J. Greeley, P. Strasser, and B. R. Cuenya, J. Am. Chem. Soc., 2014, 136(47), 16473-16476. https://doi.org/10.1021/ja508879j
  16. W. Zhu, Y.-J. Zhang, H. Zhang, H. Lv, Q. Li, R. Michalsky, A. A. Peterson, and S. Sun, J. Am. Chem. Soc., 2014, 136(46), 16132-16135. https://doi.org/10.1021/ja5095099
  17. S. Back, M. S. Yeom, and Y. Jung, ACS Catal., 2015, 5(9), 5089-5096. https://doi.org/10.1021/acscatal.5b00462
  18. Y. S. Ham, M. J. Kim, J. Choi, S. Choe, T. Lim, S.-K. Kim, and J. J. Kim, J. Nanosci. Nanotechnol., 2016, 16(10), 10846-10852. https://doi.org/10.1166/jnn.2016.13251
  19. J.-H. Kim, H. Woo, S.-W. Yun, H.-W. Jung, S. Back, Y. Jung, and Y.-T. Kim, Appl. Catal. B, 2017, 213, 211-215. https://doi.org/10.1016/j.apcatb.2017.05.001
  20. M. W. Chung, I. Y. Cha, M. G. Ha, Y. Na, J. Hwang, H. C. Ham, H.-J. Kim, D. Henkensmeier, S. J. Yoo, J. Y. Kim, S. Y. Lee, H. S. Park, and J. H. Jang, Appl. Catal. B, 2018, 237, 673-680. https://doi.org/10.1016/j.apcatb.2018.06.022
  21. Y. S. Ham, M. J. Kim, T. Lim, D.-K. Kim, S.-K. Kim, and J. J. Kim, Int. J. Hydrog. Energy, 2018, 43(24), 11315-11325. https://doi.org/10.1016/j.ijhydene.2017.12.067
  22. X. Peng, S. G. Karakalos, and W. E. Mustain, ACS Appl. Mater. Interfaces, 2018, 10(2), 1734-1742. https://doi.org/10.1021/acsami.7b16164
  23. J. Rosen, G. S. Hutchings, Q. Lu, R. V. Forest, A. Moore, and F. Jiao, ACS Catal., 2015, 5(8), 4586-4591. https://doi.org/10.1021/acscatal.5b00922
  24. W. Luo, J. Zhang, M. Li, and A. Zu?ttel, ACS Catal., 2019, 9(5), 3783-3791. https://doi.org/10.1021/acscatal.8b05109
  25. Z. Weng, J. Jiang, Y. Wu, Z. Wu, X. Guo, K.L. Materna, W. Liu, V.S. Batista, G.W. Brudvig, and H. Wang, J. Am. Chem. Soc., 2016, 138(26), 8076-8079. https://doi.org/10.1021/jacs.6b04746
  26. C. Delacourt and J. Newman, J. Electrochem. Soc., 2010, 157(12), B1911.
  27. M. G. Ha, Y. Na, H. Y. Park, H.-J. Kim, J. Song, S. J. Yoo, Y.-T. Kim, H. S. Park, and J. H. Jang, J. Electrochem. Sci. Technol., 2021, 12(4), 406-414. https://doi.org/10.33961/jecst.2021.00220
  28. E. J. Dufek, T. E. Lister, and M. E. McIlwain, J. Appl. Electrochem., 2011, 41(6), 623-631. https://doi.org/10.1007/s10800-011-0271-6
  29. E. J. Dufek, T. E. Lister, S. G. Stone, and M. E. McIlwain, J. Electrochem. Soc., 2012, 159(9), F514.
  30. D. T. Whipple, E. C. Finke, and P. J. A. Kenis, Electrochem. Solid-State. Lett., 2010, 13(9), B109.
  31. M. R. Thorson, K. I. Siil, and P. J. A. Kenis, J. Electrochem. Soc., 2012, 160(1), F69.
  32. B. Kim, S. Ma, H.-R. M. Jhong, and P. J. A. Kenis, Electrochim. Acta, 2015, 166, 271-276. https://doi.org/10.1016/j.electacta.2015.03.064
  33. B. Kim, F. Hillman, M. Ariyoshi, S. Fujikawa, and P. J. A. Kenis, J. Power Sources, 2016, 312, 192-198. https://doi.org/10.1016/j.jpowsour.2016.02.043
  34. S. Verma, X. Lu, S. Ma, R. I. Masel, and P. J. A. Kenis, Phys. Chem. Chem. Phys., 2016, 18(10), 7075-7084. https://doi.org/10.1039/C5CP05665A
  35. M. Zhang, Z. Hu, L. Gu, Q. Zhang, L. Zhang, Q. Song, W. Zhou, and S. Hu, Nano Res., 2020, 13, 3206-3211. https://doi.org/10.1007/s12274-020-2988-1
  36. H. Kim, H. Lee, T. Lim, and S. H. Ahn, J. Ind. Eng. Chem., 2018, 66, 248-253. https://doi.org/10.1016/j.jiec.2018.05.036
  37. W. Guo, K. Shim, and Y.-T. Kim, Appl. Surf. Sci., 2020, 526, 146651.
  38. J. Zeng, K. Bejtka, W. Ju, M. Castellino, A. Chiodoni, A. Sacco, M. A. Farkhondehfal, S. Hernandez, D. Rentsch, C. Battaglia, and C. F. Pirri, Appl. Catal. B, 2018, 236, 475-482. https://doi.org/10.1016/j.apcatb.2018.05.056
  39. D.-w. Yang, Q.-y. Li, F.-x. Shen, Q. Wang, L. Li, N. Song, Y.-n. Dai, and J. Shi, Electrochim. Acta, 2016, 189, 32-37.
  40. S. Y. Choi, S. K. Jeong, H. J. Kim, I.-H. Baek, and K. T. Park, ACS Sustainable Chem. Eng., 2016, 4(3), 1311-1318. https://doi.org/10.1021/acssuschemeng.5b01336
  41. R. Daiyan, X. Lu, W. H. Saputera, Y. H. Ng, and R. Amal, ACS Sustainable Chem. Eng., 2018, 6(2), 1670-1679. https://doi.org/10.1021/acssuschemeng.7b02913
  42. K. Kannan, M. H. Sliem, A. M. Abdullah, K. K. Sadasivuni, and B. Kumar, Catalysts, 2020, 10(5), 549.
  43. F. Bienen, D. Kopljar, S. Geiger, N. Wagner, and K. A. Friedrich, ACS Sustainable Chem. Eng., 2020, 8(13), 5192-5199. https://doi.org/10.1021/acssuschemeng.9b07625
  44. J. O'M. Bockris, B. E. Conway, and R. E. White (Eds.), Modern aspects of electrochemistry, Springer Science & Business Media, 1992.
  45. K. S. Adarsh, N. Chandrasekaran, and V. Chakrapani, Front. Chem., 2020, 8, 137.
  46. B. Qin, Y. Li, H. Wang, G. Yang, Y. Cao, H. Yu, Q. Zhang, H. Liang, and F. Peng, Nano Energy, 2019, 60, 43-51. https://doi.org/10.1016/j.nanoen.2019.03.024
  47. Y. Na, M. G. Ha, H. S. Park, H. Y. Park, H.-J. Kim, D. Henkensmeier, S. J. Yoo, J. Y. Kim, S. Y. Lee and J. H. Jang, Front. Energy Res., 2022, 10, 943113.
  48. K. Elsoe, M. R. Kraglund, L. Grahl-Madsen, G. G. Scherer, J. Hjelm, S. H. Jensen, T. Jacobsen, and M. B. Mogensen, Fuel Cells, 2018, 18(5), 640-648. https://doi.org/10.1002/fuce.201800005
  49. R. H. Tammam, A. M. Fekry, and M. M. Saleh, Korean J. Chem. Eng., 2019, 36, 1932-1939. https://doi.org/10.1007/s11814-019-0381-0
  50. N. J. Perez-Viramontes, V. H. Collins-Martinez, I. L. Escalante-Garcia, J. R. Flores-Hernandez, M. GalvanValencia, and S. M. Duron-Torres, Catalysts, 2020, 10(5), 524.
  51. C. Chen, X. Wang, R. Xu, Y. Zhang, S. Feng, A. Ju, and W. Jiang, RSC Adv., 2021, 11, 6146-6158. https://doi.org/10.1039/D0RA08448D
  52. J. Santana, M. Espinoza-Andaluz, T. Li, and M. Andersson, Front. Energy Res., 2020, 8, 217.
  53. T. S. Mayadevi, B.-H. Goo, S. Y. Paek, O. Choi, Y. Kim, O. J. Kwon, S. Y. Lee, H.-J. Kim, and T.-H. Kim, ACS Omega, 2022, 7(15), 12956-12970. https://doi.org/10.1021/acsomega.2c00263