DOI QR코드

DOI QR Code

The Effective Capacitance of a Constant Phase Element with Resistors in Series

  • 투고 : 2022.05.26
  • 심사 : 2022.07.27
  • 발행 : 2022.11.30

초록

The power of energy storage devices is characterized by capacitance and the internal resistance. The capacitance is measured on an assumption that the charges are stored at the electrode interface and the electric double layer behaves like an ideal capacitor. However, in most cases, the electric double layer is not ideal so a constant phase element (CPE) is used instead of a capacitor to describe the practical observations. Nevertheless, another problem with the use of the CPE is that CPE does not give capacitance directly. Fortunately, a few methods were suggested to evaluate the effective capacitance in the literature. However, those methods may not be suitable for supercapacitors which are modeled as an equivalent circuit of a CPE and resistor connected in series because the time constant of the equivalent circuit is not clearly studied. In this report, in order to study the time constant of the CPE and find its equivalent capacitor, AC and DC methods are utilized in a complementary manner. As a result, the time constants in the AC and DC domains are compared with digital simulation and a proper equation is presented to calculate the effective capacitance of a supercapacitor, which is extended to an electrochemical system where faradaic and ohmic processes are accompanied by imperfect charge accumulation process.

키워드

과제정보

This work was supported by a Research Grant of Pukyong National University (2021).

참고문헌

  1. B.-Y. Chang and S.-M. Park, Annu. Rev. Anal. Chem., 2010, 3, 207-229. https://doi.org/10.1146/annurev.anchem.012809.102211
  2. L. E. Helseth, J. Energy Storage, 2021, 35, 102304.
  3. Y. Zhang, Y. Chen, M. Yan, and F. Chen, J. Power Sources, 2015, 283, 464-477.
  4. J. P. Schmidt, P. Berg, M. Schonleber, A. Weber, and E. Ivers-Tiffee, J. Power Sources, 2013, 221, 70-77. https://doi.org/10.1016/j.jpowsour.2012.07.100
  5. B. A. Boukamp, Electrochim. Acta, 2015, 154, 35-46. https://doi.org/10.1016/j.electacta.2014.12.059
  6. M. B. Effat and F. Ciucci, Electrochim. Acta, 2017, 247, 1117-1129.
  7. W. Choi, H.-C. Shin, J. M. Kim, J.-Y. Choi, and W.-S. Yoon, J. Electrochem. Sci. Technol., 2020, 11(1), 1-13. https://doi.org/10.33961/jecst.2019.00528
  8. J. R. Macdonald and W. B. Johnson, Fundamentals of impedance spectroscopy, Fundamentals of impedance spectroscopy: Theory, experiment, and applications, 2nd Edition, John Wiley & Sons, New York, 2005.
  9. Y. Huang, H. Shih, and F. Mansfeld, Mater. Corros., 2010, 61(4), 302-305. https://doi.org/10.1002/maco.200905385
  10. C. H. Hsu and F. Mansfeld, Corrosion, 2001, 57(9), 747-748. https://doi.org/10.5006/1.3280607
  11. B.-Y. Chang, J. Electrochem. Sci. Technol., 2020, 11(3), 318-321.
  12. E. P. M. van Westing, G. M. Ferrari, and J. H. W. de Wit, Corros. Sci., 1993, 34(9), 1511-1530. https://doi.org/10.1016/0010-938X(93)90245-C
  13. B. Hirschorn, M. E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani, Electrochim. Acta, 2010, 55(21), 6218-6227. https://doi.org/10.1016/j.electacta.2009.10.065
  14. C. Yun and S. Hwang, ACS Omega, 2021, 6(1), 367-373. https://doi.org/10.1021/acsomega.0c04702
  15. S.-Y. Hong and S.-M. Park, J. Phys. Chem. B, 2007, 111(33), 9779-9786. https://doi.org/10.1021/jp073025u
  16. H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang, and S. Wang, J. Power Sources, 2009, 190(2), 578-586. https://doi.org/10.1016/j.jpowsour.2009.01.052
  17. C. K. Alexander and M. N. O. Sadiku, Fundamentals of Electric Circuits, McGraw-Hill, New York, 2000.
  18. N. Mohanapriya, M. Kumaravel, and B. Lalithamani, J. Electrochem. Sci. Technol., 2020, 11(2), 117-131. https://doi.org/10.33961/jecst.2019.00430
  19. X. Vendrell, J. Ramirez-Gonzalez, Z.-G. Ye, and A. R. West, Commun. Phys., 2022, 5, 9.