DOI QR코드

DOI QR Code

Electrochemical Oxygen Evolution Reaction on NixFe3-xO4 (0 ≤ x ≤ 1.0) in Alkaline Medium at 25℃

  • Pankaj, Chauhan (Department of Chemistry Institute of Applied Sciences and Humanities, GLA University) ;
  • Basant, Lal (Department of Chemistry Institute of Applied Sciences and Humanities, GLA University)
  • 투고 : 2022.05.17
  • 심사 : 2022.08.08
  • 발행 : 2022.11.30

초록

Spinel ferrites (NixFe3-xO4; x = 0.25, 0.5, 0.75 and 1.0) have been prepared at 550℃ by egg white auto-combustion route using egg white at 550℃ and characterized by physicochemical (TGA, IR, XRD, and SEM) and electrochemical (CV and Tafel polarization) techniques. The presence of characteristic vibration peaks in FT-IR and reflection planes in XRD spectra confirmed the formation of spinel ferrites. The prepared oxides were transformed into oxide film on glassy carbon electrodes by coating oxide powder ink using the nafion solution and investigated their electrocatalytic performance for OER in an alkaline solution. The cyclic voltammograms of the oxide electrode did not show any redox peaks in oxygen overpotential regions. The iR-free Tafel polarization curves exhibited two Tafel slopes (b1 = 59-90 mV decade-1 and b2 = 92-124 mV decade-1) in lower and higher over potential regions, respectively. Ni-substitution in oxide matrix significantly improved the electrocatalytic activity for oxygen evolution reaction. Based on the current density for OER, the 0.75 mol Ni-substituted oxide electrode was found to be the most active electrode among the prepared oxides and showed the highest value of apparent current density (~9 mA cm-2 at 0.85 V) and lowest Tafel slope (59 mV decade-1). The OER on oxide electrodes occurred via the formation of chemisorbed intermediate on the active sites of the oxide electrode and follow the second-order mechanism.

키워드

과제정보

The authors like to express their sincere thanks to Prof. A. K. Tiwari, Babasaheb Bhimrao Ambedkar University, Lucknow for providing SEM of our samples and Dr. M. Malviya, Department of Chemistry, IIT Banaras Hindu University for their invaluable support to carryout electrochemical experiments.

참고문헌

  1. P. Shinde, C. S. Rout, D. Late, P. K. Tyagi, and M. K. Singh, Int. J. Hydrog. Energy, 2021, 46(2), 2617-2629. https://doi.org/10.1016/j.ijhydene.2020.10.144
  2. G. Soloveichik, Nat. Catal., 2019, 2, 377-380. https://doi.org/10.1038/s41929-019-0280-0
  3. T. Tatarchuk, N. Danyliuk, A. Shyichuk, V. Kotsyubynsky, I. Lapchuk, and V. Mandzyuk, Emergent Mater., 2022, 5, 89-103.
  4. Y. Kumar, V. K. Vashishtha, P. P. Singh, A. Kumar, and D. K. Das, Biointerface Res. Appl. Chem., 2020, 10(4), 5855-5859.
  5. Y. Kumar, P. P. Singh, P. Pramanik, and D. Das, J. Sci. Ind. Res., 2019, 78, 177-181.
  6. S. Bansal, Y. Kumar, D. K. Das, and P. P. Singh, Chemistry, 2019, 13(2), 163-169.
  7. P. Pippal and P. Singh, Asian J. Sci. Technol., 2018, 9(1), 7286.
  8. M. P. Pelini, Avd. Funct. Mater., 2001, 11(5), 323-336. https://doi.org/10.1002/1616-3028(200110)11:5<323::AID-ADFM323>3.0.CO;2-J
  9. F. Y. Cheng, C. H. Su, Y. Yang, S. C. Yeh, C. Y. Tsa, and C. L. Wu, Biomaterials, 2005, 26(7), 729-738. https://doi.org/10.1016/j.biomaterials.2004.03.016
  10. Q. Song and Z. J. Zhang, J. Am. Chem. Soc., 2004, 126(19), 6164-6168. https://doi.org/10.1021/ja049931r
  11. A. Goldman, Modern Ferrite Technology, Springer, New York, 2006.
  12. M. S. Niasari, F. Davar, and T. Mahamoudi, Polyhedron, 2009, 28(8), 1455-1458. https://doi.org/10.1016/j.poly.2009.03.020
  13. R. D. McMichael, R. D. Shull, L. J. Swartzendruber, L. H. Bennett, and R. E. Wat-son, J. Magn. Magn. Mater., 1992, 111(1-2), 29-33. https://doi.org/10.1016/0304-8853(92)91049-Y
  14. T. Krishnaveni, B. V. RajiniKant, S. R., Raju, and S. R., Murthy, J. Alloy. Compd., 2006, 414(1-2), 282-286. https://doi.org/10.1016/j.jallcom.2005.07.029
  15. Y. I. Kim, D. Kim, and C. S. Lee, Phys. B: Condens. Matter, 2003, 337(1-4), 42-51. https://doi.org/10.1016/S0921-4526(03)00322-3
  16. K. V. P. M. Shafi, A. Gediankem, R. Prozorov, and J. Balogh, Chem. Matter., 1998, 10(11), 3445-3450. https://doi.org/10.1021/cm980182k
  17. J. O'M. Bockris and T. Otagawa, J. Phys. Chem., 1983, 87(15), 2960-2971. https://doi.org/10.1021/j100238a048
  18. F. Svegl, B. Orel, I. Grabec-Svegl, and V. Kaucic, Electrochim. Acta, 2000, 45(25-26), 4359-4371. https://doi.org/10.1016/S0013-4686(00)00543-0
  19. R. N. Panda, N. S. Gajbhiye, and G. Balaji, J. Alloys Compd., 2001, 326(1-2), 50-53.
  20. Y. Ahn, E. J. Choi, S. Kim, and H. N. Ok, Mater. Lett., 2001, 50(1), 47-52. https://doi.org/10.1016/S0167-577X(00)00412-2
  21. B. Lal and P. K. Rastogi, Orbital: The Electron. J. Chem., 2020, 12(3), 154.
  22. S. M. Senthil, R. Jayaprakash, V. N. Singh, B. R. Mehta, and G. Govindaraj, J. Nano Res., 2008, 4(6), 107-116.
  23. Y. Mine, Trends Food Sci. Technol., 1995, 6(7), 225-232. https://doi.org/10.1016/S0924-2244(00)89083-4
  24. Y. M. A. Angari, Int. J. Electrochem. Sci., 2018, 13, 12331-12339. https://doi.org/10.20964/2018.12.25
  25. R. N. Singh, J. P. Singh, B. Lal, M. J. K., Thomas, and S. Bera, Electrochim. Acta, 2006, 51(25), 5515-5523. https://doi.org/10.1016/j.electacta.2006.02.028
  26. B. Lal, N. K. Singh, S. Samuel, and R. N. Singh, J. New Mater. Electrochem. Syst., 1999, 2(1), 59-64.
  27. P. Li, R. Ma, Y. Zhau, Y. Chen, Q. Liu, G. Peng, Z. Liang, and J. Wang, RSC Adv., 2015, 5, 73834-73841. https://doi.org/10.1039/C5RA14713A
  28. M. P. Reddy, W. Madhuri, K. Shadhana, I. G. Kim, K. N. Hui, K. S. Hui, K. V. S. Kumar, and R. R. Reddy, J. Sol-Gel Sci. Technol., 2014, 70(3), 400-404. https://doi.org/10.1007/s10971-014-3295-7
  29. N. K. Singh, M. K. Yadav, R. Parihar, and C. Gangwar, J. New Mater. Electrochem. Syst., 2020, 23(2), 87-93. https://doi.org/10.14447/jnmes.v23i2.a05
  30. M. S. Al-Hoshan, J. P. Singh, A. M. Al-Mayouf, A. A. Al-Suhybani, and M. N. Shaddad, Int. J. Electrochem. Sci., 2012, 7, 4959-4973. https://doi.org/10.1016/S1452-3981(23)19595-2
  31. B. Lal, Ind. J. Chem., 2021, 60A, 1303-1308.
  32. N. K. Singh and R. N. Singh, Ind. J. Chem., 1999, 38A, 491-495.
  33. E. J. M. O'Sullivan and E. J. Calvo, Comprehensive chemical kinetics, R. G. Comptom(Ed.), Elsevier, Amsterdam, 1987, 27, 274.
  34. J. Orehotsky, H. Huang, C. R. Davison, and S. Srinivasan, J. Electroanal. Chem. Interfacial Electrochem., 1979, 95(2), 233-235. https://doi.org/10.1016/S0022-0728(79)80324-1
  35. C. Iwakura, M. Nishioka, and H. Tamura, Nippon Kagaku Kaishi, 1982, 1982(7), 1136-1140.
  36. C. Iwakura, M. Nishioka, and H. Tamura, Denki Kagaku, 1981, 49(8), 535-536. https://doi.org/10.5796/kogyobutsurikagaku.49.535