DOI QR코드

DOI QR Code

Solution-Processed Quantum Dot Light-Emitting Diodes with TiO2 Nanoparticles as an Electron Transport Layer and a PMMA Insulating Layer

TiO2를 전자수송층으로 적용하고 PMMA 절연층을 삽입한 용액공정 기반 양자점 전계 발광 소자의 활용

  • Kim, Bomi (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Kim, Jungho (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Kim, Jiwan (Department of Advanced Materials Engineering, Kyonggi University)
  • 김보미 (경기대학교 신소재공학과) ;
  • 김정호 (경기대학교 신소재공학과) ;
  • 김지완 (경기대학교 신소재공학과)
  • Received : 2021.09.23
  • Accepted : 2021.10.13
  • Published : 2022.01.01

Abstract

We report highly efficient quantum dot light-emitting diodes (QLEDs) with TiO2 nanoparticles (NPs) as an alternative electron transport layer (ETL) and poly (methyl methacrylate) (PMMA) as an insulating layer. TiO2 NPs were applied as ETLs of inverted structured QLEDs and the effect of the addition of PMMA between ETL and emission layer (EML) on device characteristics was studied in detail. A thin PMMA layer supported to make the charge balance in the EML of QLEDs due to its insulating property, which limits electron injection effectively. Green QLEDs with a PMMA layer produced the maximum luminance of 112,488 cd/m2 and a current efficiency of 25.92 cd/A. We expect the extended application of TiO2 NPs as the electron transport layer in inverted structured QLEDs device in the near future.

Keywords

Acknowledgement

이 논문은 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(2021R1F1A1061248).

References

  1. S. Coe, W. K. Woo, M. Bawendi, and V. Bulovic, Nature, 420, 800 (2002). [DOI: https://doi.org/10.1038/nature01217]
  2. H. Zhang, Q. Su, and S. Chen, Nat. Commun., 11, 2826 (2020). [DOI: https://doi.org/10.1038/s41467-020-16659-x]
  3. J. H. Im and Y. H. Choe, Inf. Disp., 20, 5 (2019). [DOI: http://www.koreascience.or.kr/article/JAKO201926838276291.page]
  4. B. H. Kang, J. S. Kim, J. S. Lee, S. W. Lee, G. Sai-Anand, H, M. Jeong, S. H. Lee, D. H. Kwon, and S. W. Kang, J. Nanosci. Nanotechnol., 15, 7416 (2015). [DOI: https://doi.org/10.1166/jnn.2015.10542]
  5. W. Han and H. H. Park, J. Microelectron. Packag. Soc., 26, 23 (2019). [DOI: https://doi.org/10.6117/kmeps.2019.26.1.0023]
  6. K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, Nat. Photonics, 3, 341 (2009). [DOI: https://doi.org/10.1038/NPHOTON.2009.92]
  7. M. Kim, C. Yoon, and J. Kim, J. Microelectron. Packag. Soc., 26, 71 (2019). [DOI: https://doi.org/10.6117/kmeps.2019.26.3.071]
  8. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, Nature, 515, 96 (2014). [DOI: https://doi.org/10.1038/nature13829]