DOI QR코드

DOI QR Code

eVTOL 항공기 블레이드 피치 제어용 선형 구동기 기본설계 모델의 구조 안전성 평가

Structural Safety Evaluation of Basic Design Model of Linear Actuator for Blade Pitch Control of eVTOL Aircraft

  • 김영철 (한경대학교 ICT로봇기계공학부) ;
  • 김동협 (한경대학교 융합시스템공학과) ;
  • 김상우 (한경대학교 ICT로봇기계공학부) ;
  • 강정현 ((주)영풍전자) ;
  • 김도형 (한화에어로스페이스(주))
  • Young-Cheol, Kim (School of ICT, Robotics & Mechanical Engineering, Hankyong National University) ;
  • Dong-Hyeop, Kim (Department of Integrated Systems Engineering, Hankyong National University) ;
  • Sang-Woo, Kim (School of ICT, Robotics & Mechanical Engineering, Hankyong National University) ;
  • Jeong-Hyun, Kang (Youngpoong Electronics Co., Ltd.) ;
  • Dohyung, Kim (Hanwha Aerospace Co., Ltd.)
  • 투고 : 2022.08.26
  • 심사 : 2022.10.24
  • 발행 : 2022.12.31

초록

본 연구에서는 eVTOL 개인항공기의 개별 블레이드 피치 제어용 선형 구동기 기본설계 모델에 대한 구조 안전성을 검토하였다. Stall 하중에 대한 정적 구조 안전성을 검토하기 위해 유한요소법을 이용한 응력해석을 수행하여 안전여유율을 계산하였다. 또한 선형 구동기의 운용조건에 대한 피로수명을 평가하기 위해 피로 해석을 수행하였다. 다물체 동역학 분석을 통해 블레이드 피치각에 따른 하중이력을 산출하였다. 또한 정하중 해석에 정격하중을 적용하여 응력 분포를 산출하고 피로 해석에 활용하였다. 해석 결과, 선형 구동기의 모든 부품은 0 이상의 안전여유율이 계산되었고, 107 cycles 이상의 피로수명이 산출되어 구조적으로 안전함이 확인되었다.

The structural safety of the basic design model of the linear actuator for the individual blade pitch control of eVTOL personal aircraft was investigated. Stress analysis based on the finite element method was conducted, and the margin of safety was calculated to examine the structural safety under stall load conditions. Additionally, fatigue analysis was conducted to evaluate the fatigue life of the linear actuators under operating conditions. The load history with the blade pitch angle was calculated using multi-body dynamics analysis, and the static load analysis was used to obtain the stress distribution for the rated load. As a result, it was confirmed that the safety margins exceeded zero, and the fatigue lives of all linear actuator components exceeded 107 cycles, indicating a safe structural range.

키워드

과제정보

본 논문은 2021년도 정부(산업통신자원부)의 재원으로 한국산업기술평가관리원의 지원을 받아 수행된 연구 결과임(No.20015907, eVTOL 모빌리티용 고신뢰도, 고속, 고출력 다중화 전기식 작동기 개발).

참고문헌

  1. D. K. Kim, "Technology Trend on the Status of the Electric Motor Rotorcraft," Current Industrial and Technological Trends in Aerospace, vol. 17, no. 1, pp. 32-41, July 2019.
  2. S. Y. Kim and J. W. Choi, "Flow Analysis around Tilt-rotor Aircraft at Various Tilt Angles," Journal of The Korean Society of Visualization, vol. 9, no. 2, pp. 40-47, Jun. 2011. https://doi.org/10.5407/JKSV.2011.9.2.040
  3. R. Koenig, M. Foell and E. Stumpf, "Potentials for Acoustic Optimization of Electric Aerial Vehicles," Deutsche Gesellschaft fur Luft-und Raumfahrt-Lilienthal-Oberth eV, 2020.
  4. S. H. Hong, Y. H. You, S. N. Jung and D. H. Kim, "Vibratory Loads Reduction of a Coaxial Rotorcraft Using Individual Blade Control Scheme," Journal of The Korean Society Aeronautical and Space Sciences, vol. 47, no. 5, pp. 364-370, May 2019. https://doi.org/10.5139/JKSAS.2019.47.5.364
  5. D. H. Kim and S. W. Kim, "Evaluation of Structural Safety of Linear Actuator for Flap Control of Aircraft," The Society for Aerospace System Engineering, vol. 13, no. 4, pp. 66-73, Aug. 2019.
  6. G. Qiao, G. Liu, Z. Shi, Y. Wang, S. Ma and T. C. Lim, "A review of electromechanical actuators for More/All Electric aircraft systems," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 232, no. 22, pp. 4128-4151, Nov. 2018.
  7. G. J. Yoon, H. Y Park and K. W. Jang, "The state of the art and application of actuator in Aerospace," Journal of the Korean Society of Propulsion Engineers, vol. 14, no. 6, pp. 89-102, Dec. 2010.
  8. Ch. Kessler, "Active rotor control for helicopters: individual blade control and swashplateless rotor designs," CEAS Aeronautical Journal, vol. 1, no. 1, pp. 23-54, May 2011. https://doi.org/10.1007/s13272-011-0001-0
  9. G. Feix, C. Marczok, E. Hoene, T. Napierala and D. Fuerst, "Development of a highly reliable power electronic unit for helicopters," Electrical Systems for Aircraft, Railway and Ship Propulsion. IEEE, pp. 1-5, Oct. 2010.
  10. J. H. Jin, "Dynamic Models of Blade Pitch Control System Driven by Electro-Mechanical Actuator," Journal of The Korean Society Aeronautical and Space Sciences, vol. 50, no. 2, pp. 111-118, Feb. 2022.
  11. J. Wang, H. Wang and C. Wu, "Development of swashplate-less helicopter blade pitch control system using the limited angle direct-drive motor (LADDM)," Chinese Journal of Aeronautics, vol. 28, no. 5, pp. 1416-1425, Oct. 2015. https://doi.org/10.1016/j.cja.2015.08.005
  12. G. Qiao, G. Liu, S. Ma, Z. Shi, Y. Wang and T. C. Lim, "An improved thermal estimation model of the inverted planetary roller screw mechanism," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 232, no. 23, pp. 4430-4446, Feb. 2018.
  13. D. H. Jeong, J. H. Kim, Y. K. Yoon, J. K. Park and K. R. Jeon, "Fatigue Characteristics of Laser Welded Zirconium Alloy Thin Sheet," Journal of The Korean Welding and Joining Society, vol. 30, no.1, pp. 59-63, Feb. 2012.
  14. W. Wang, H. Liu, C. Zhu, X. Du and J. Tang, "Effect of the residual stress on contact fatigue of a wind turbine carburized gear with multi axial fatigue criteria," International Journal of Mechanical Sciences, vol. 151, pp. 263-273, Feb. 2019. https://doi.org/10.1016/j.ijmecsci.2018.11.013
  15. J. Y. Lim, S. G. Hong and S. B. Lee, "The Prediction of Fatigue Crack Initiation Life of Cylindrical Notch Specimens Using Local Strain Approximation," Transactions of the Korean Society of Mechanical Engineers A, vol. 28, no. 6, pp. 791-798, Jun. 2004. https://doi.org/10.3795/KSME-A.2004.28.6.791
  16. M. W. Brown and K. J. Miller, "A theory for fatigue failure under multiaxial stress-strain conditions," Proceedings of the Institution of Mechanical engineers, vol. 187, no. 1, pp. 745-755, Jun. 1973. https://doi.org/10.1243/PIME_PROC_1973_187_161_02
  17. K. S. Kim, X. Chen, C. Han and H. W. Lee, "Estimation methods for fatigue properties of steels under axial and torsional loading," International journal of fatigue, vol. 24, no. 7, pp. 783-793. July 2002. https://doi.org/10.1016/S0142-1123(01)00190-6
  18. R. Basan, M. Franulovic, I. Prebil and N. Crnjaric-Zic, "Analysis of strain-life fatigue parameters and behaviour of different groups of metallic materials," International Journal of Fatigue, vol. 33, no. 3, pp. 484-491, Mar. 2011. https://doi.org/10.1016/j.ijfatigue.2010.10.005
  19. J. Y. Kang, B. I. Choi, H. J. Lee, K. J. Kim, J. S. Kim and B. C. Park, "High Cycle Fatigue under Multiaxial Random Loading for and Automotive Sub-Frame," In Proceedings of the Korean Society of Mechanical Engineers (KSME) Conference, pp. 189-195, Jun. 2002.
  20. H. G. Kim, "Fatigue Analysis of External Fuel Tank and Pylon for Fixed Wing Aircraft," Journal of the Korea Academia-Industrial cooperation Society, vol. 21, no. 7, pp. 162-167, July 2020. https://doi.org/10.5762/KAIS.2020.21.7.162