DOI QR코드

DOI QR Code

Capture Simulation for Space Objects Using Biomimetic Space Nets

생체 모방 우주 그물을 이용한 우주 물체 포획 시뮬레이션

  • Mi, Jang (Department of Aerospace Engineering, Chungnam National University) ;
  • Hyun-Cheol, Shin (Department of Aerospace Engineering, Chungnam National University) ;
  • Chang-Hoon, Sim (Department of Aerospace Engineering, Chungnam National University) ;
  • Jae-Sang, Park (Department of Aerospace Engineering, Chungnam National University) ;
  • Hae-Seong, Cho (Department of Aerospace Engineering, Jeonbuk National University)
  • 장미 (충남대학교 항공우주공학과) ;
  • 신현철 (충남대학교 항공우주공학과) ;
  • 심창훈 (충남대학교 항공우주공학과) ;
  • 박재상 (충남대학교 항공우주공학과) ;
  • 조해성 (전북대학교 항공우주공학과)
  • Received : 2022.08.10
  • Accepted : 2022.10.26
  • Published : 2022.12.31

Abstract

This paper investigates the capture of a 12U-sized CubeSat space object using a spider-web structure-based space net. The structural dynamics analysis program ABAQUS is used to simulate the shock-absorbing capability of the space net with a diagonal length of 2.828 m. The space object is modelled as a rigid body, and the space net is modelled using non-linear elastic beam elements. The simulations reveal that the spider-web structure-based space net outperforms the squared space net of the same structural weight in capturing the space object. The numerical simulations are conducted to examine the successful or unsuccessful captures of the space object in various cooperative and non-cooperative motions.

본 연구에서는 우주 그물의 우주 물체 포획 성능을 향상시키기 위하여 충격 흡수의 이점을 가지는 거미집 구조의 생체 모방 우주 그물을 이용한 우주 물체 포획 시뮬레이션을 수행하였다. 포획 시뮬레이션은 비선형 구조 동역학 해석 프로그램인 ABAQUS를 이용하여 수행하였다. 우주 물체는 12U 크기의 CubeSat을 강체로 모델링하였다. 거미집 구조의 우주 그물은 대각선 길이가 2.828 m이며, 탄성보 요소를 이용하여 구현하였다. 동일 중량의 정사각형 우주 그물의 포획 시뮬레이션 결과와 비교하여 생체 모방 우주 그물의 포획의 우수성을 확인하였다. 또한, 거미집 구조의 우주 그물을 이용하여 우호적 및 비우호적으로 운동하는 우주 물체를 포획하는 수치 시뮬레이션을 수행하였으며, 우주 물체의 포획 성공 및 실패 사례를 조사하였다.

Keywords

Acknowledgement

본 논문은 2022년 정부(과학기술정보통신부)의 재원으로 한국연구재단 스페이스챌린지사업(NRF-2022M1A3B8076744)의 지원을 받아 수행된 연구입니다. 본 논문의 일부는 항공우주시스템공학회 2022년 춘계학술대회 및 한국군사과학기술학회 2022년 종합학술대회에서 발표되었습니다.

References

  1. ESA Space Debris Office, "ESA's annual space environment report," no. 6, Apr. 2022.
  2. NASA Orbital Debris Program Office, "Orbital debris quarterly news," vol. 26, no. 1, Mar. 2022.
  3. J. C. Liou and N. L. Johnson, "Risks in space from orbiting debris," Science, vol. 311, no. 5759, pp. 340-341, Jan. 2006. https://doi.org/10.1126/science.1121337
  4. B. B. Virgili and H. Krag, "Analyzing the criteria for a stable environment," AAS/AIAA Astrodynamics Specialist Conference, vol. 411, Jul. 2011.
  5. H.-D. Kim, and M.-K. Kim, "Recent Status on Active Space Debris Removal Technologies," Journal of the Korean Society for Aeronautical & Space Sciences, vol. 43, no. 9, pp. 845-857, Sep. 2015.
  6. M. Shan, J. Guo, and E. Gill, "Review and comparison of active space debris capturing and removal methods," Progress in Aerospace Sciences, vol. 80, pp. 18-32, Nov. 2016.
  7. ESA blog, https://blogs.esa.int/cleanspace/2017/02/09/space-debris-catch-it-if-we-can/
  8. K. Wormnes, R. Le Letty, L.Summerer, R. Schonenborg, O. Dubois-Matra, E. Luraschi, A. Cropp, H. Krag, and J. Delaval, "ESA technologies for space debris remediation," In 6th European Conference on Space Debris, vol. 1, pp. 1-8, Apr. 2013.
  9. J.-M. Choi, "Study on methods for space debris removal," Current Industrial and Technological Trends in Aerospace, vol. 14, no. 2, pp. 43-54, Dec. 2016.
  10. J. L. Forshaw, G. S. Aglietti, S. Fellowes, T. Salmon, I. Retat, A. Hall, T. Chabot, A. Pisseloup, D. Tye, C. Bernal, F. Chaumette, A. Pollini, and W. H. Steyn, "The active space debris removal mission RemoveDebris. Part 1: From concept to launch," Acta Astronautica, vol. 168, pp. 293-309, Mar. 2020. https://doi.org/10.1016/j.actaastro.2019.09.002
  11. G. S. Aglietti, B. Taylor, S. Fellowes, T. Salmon, I. Retat, A. Hall, T. Chabot, A. Pisseloup, C. Cox, A. Zarkesh, A. Mafficini, N. Vinkoff, K. Bashford, C. Bernal, F. Chaumette, A. Pollini, and W. H. Steyn, "The active space debris removal mission RemoveDebris. Part 2: In orbit operations," Acta Astronautica, vol. 168, pp. 310-322, Mar. 2020. https://doi.org/10.1016/j.actaastro.2019.09.001
  12. E. M. Botta, I. Sharf, and A. K. Misra, "Contact dynamics modeling and simulation of tether nets for space-debris capture," Journal of Guidance, Control, and Dynamics, vol. 40, no. 1, pp. 110-123, Nov. 2017. https://doi.org/10.2514/1.G000677
  13. J. Si, Z. Pang, Z. Du, and C. Cheng, "Dynamics modeling and simulation of self-collision of tether-net for space debris removal," Advances in Space Research, vol. 64, no. 9, pp. 1675-1687, Nov. 2019. https://doi.org/10.1016/j.asr.2019.08.006
  14. W. Golebiowski, M. Dyrek, U. Battista, and K. Wormnes, "Validation of flexible bodies dynamics simulator in parabolic flight," In 66th International Astronautical Congress, vol. 1, pp. 491-502, Oct. 2015.
  15. W. Golebiowski, R. Michalczyk, M. Dyrek, U. Battista, and K. Wormnes, "Validated simulator for space debris removal with nets and other flexible tethers applications," Acta Astronautica, vol. 129, pp. 229-240, Dec. 2016. https://doi.org/10.1016/j.actaastro.2016.08.037
  16. M. Shan, J. Guo, and E. Gill, "An analysis of the flexibility modeling of a net for space debris removal," Advances in Space Research, vol. 65, no. 3, pp. 1083-1094, Feb. 2020. https://doi.org/10.1016/j.asr.2019.10.041
  17. M. Shan, J. Guo, E. Gill, and W. Golebiowski, "Validation of space net deployment modeling methods using parabolic flight experiment," Journal of Guidance, Control, and Dynamics, vol. 40, no. 12, pp. 3319-3327, Aug. 2017. https://doi.org/10.2514/1.G002761
  18. U.-J. Hwang, M. Jang, J.-H. Lim, H.-C. Shin, C.-H. Sim, and J.-S. Park, "Capture simulation study for space debris using space-nets," Journal of the Korean Society for Aeronautical & Space Sciences, vol. 50, no. 6, pp. 435-444, Jun. 2022.
  19. Y. Jiang, and H. Nayeb-Hashemi, "Energy dissipation during prey capture process in spider orb webs," Journal of Applied Mechanics, vol. 87, no. 9, Jun. 2020.
  20. B. Xu, Y. Yang, Y. Yan, and B. Zhang, "Bionics design and dynamics analysis of space webs based on spider predation," Acta Astronautica, vol. 159, pp. 294-307, Jun. 2019. https://doi.org/10.1016/j.actaastro.2019.03.045
  21. B. Xu, Y. Yang, B. Zhang, Y. Yan, and Z. Yi, "Bionic design and experimental study for the space flexible webs capture system," IEEE Access, vol. 8, pp. 45411-45420, Mar. 2020. https://doi.org/10.1109/access.2020.2978108
  22. Dassault Systems Simulia Corp, "Abaqus 6.14 analysis user's manual," vol.5, 2014.
  23. I. F. Brown, and C. J. Burgoyne, "The friction and wear of Kevlar 49 sliding against aluminum at low velocity under high contact pressures," Wear, vol. 236, no. 1-2, pp. 315-327, Dec. 1999. https://doi.org/10.1016/S0043-1648(99)00293-8
  24. H.-C. Shin, C.-H. Sim, and J.-S. Park, "A Simulation study for space debris capture using a space net," The Society for Aerospace System Engineering Spring Conference, Jul. 2021.
  25. E. M. Botta, "Deployment and capture dynamics of tether-nets for active space debris removal," Ph.D. thesis, McGill University, Nov. 2017.
  26. I. Sharf, B. Thomsen, E. M. Botta, and A. K. Misra, "Experiments and simulation of a net closing mechanism for tether-net capture of space debris," Acta Astronautica, vol. 139, pp. 332-343, Oct. 2017. https://doi.org/10.1016/j.actaastro.2017.07.026
  27. DuPont F.T., "Klevlar® aramid fiber technical guide," Mar. 2019.
  28. J. Silha, J. N. Pittet, M. Hamara, and T. Schildknecht, "Apparent rotation properties of space debris extracted from photometric measurements," Advances in space research, vol. 61, no. 3, pp. 844-861, Oct. 2018.  https://doi.org/10.1016/j.asr.2017.10.048