DOI QR코드

DOI QR Code

In-Situ Resources Utilization Technologies for Human Activities on the Moon

달에서 인류 활동을 위한 달 현지자원활용(In-Situ Resources Utilization) 기술

  • Geunu, Ryu (Korea Institute of Civil and Building Technology) ;
  • Byunghyun, Ryu (Korea Institute of Civil and Building Technology)
  • Received : 2022.11.08
  • Accepted : 2022.11.23
  • Published : 2022.12.01

Abstract

After industrialization has been started, mankind needs and consumes more resources. Now, the resources depletion is a serious problem in the Earth. However, there are infinite resources in the Space. Especially, the Moon is the closest planet and has much resources, including Helium-3 and rare earths, which are needed to human being in the future. Humanity needs to reside on the moon to harvest these resources. For the resident, much resources, such as food, construction, and industrial materials, are needed. However, to transport these resources to the Moon from the Earth, an astronomical cost should be consumed. Thus, research is underway to support human activities by procuring resources locally. This is called In-Situ Resources Utilization (ISRU), which is the essential technology for the space development. In this paper, the reason why ISRU is essential and the its status are introduced and future research projects will be explained.

산업화가 시작된 후 인류는 더 많은 자원을 필요로 하고 소비하며, 현재 자원 고갈은 지구의 심각한 문제이다. 그러나 우주에는 무한한 자원이 존재한다. 특히 달은 지구와 가장 가까운 행성으로 미래 인류에게 필요한 헬륨-3, 희토류 등 많은 자원을 보유하고 있다. 이러한 자원을 채굴하기 위해서는 인류가 달에 상주할 필요가 있다. 그리고 달에 거주하는 인류는 식량, 건축, 산업 자재 등 많은 자원이 필요하다. 그러나 이러한 자원을 지구에서 달까지 운반하려면 천문학적인 비용이 소모되므로 현지에서 자원을 조달하여 인류의 활동을 지원하는 연구가 진행되고 있다. 이를 ISRU(In-Situ Resources Utilization)라고 하며, 이는 우주개발에 필수적이다. 본 논문에서는 ISRU이 필수적인 이유와 그 기술현황을 소개하고 향후 연구과제에 대해 서술하였다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업)사업으로 수행되었습니다(과제번호 20220124-001, 극한건설 환경 구현 인프라 및 TRL6 이상급 극한건설 핵심기술 개발).

References

  1. Adhikari, A., Jha, A., Tukkaraja, P., Verburg, A. and Srivatsan, J. S. (2021), Lunar underground mining and ventilation requirements, Earth and Space 2021, Virtual conference, pp. 254-263.
  2. Agosto, N., W., Wickman, J. H. and James, E. (1988), Lunar cements/concretes for orbital structures, in Engineering, construction, and operations in space, pp. 157-168.
  3. Anand, M. (2010), Lunar Water: A Brief Review, Earth, Moon, and Planets, Vol. 107, pp. 65-73. https://doi.org/10.1007/s11038-010-9377-9
  4. Berry, R. L. (1970), MUNCH WINDOW AND TRAMSLUNAR, LUNAR ORBIT, AND TRANSEARTH TRAJECTORY PLANNING AND CONTROL FOR THE MOLL0 11 LUNAR LANDING MISSION, AIAA 8th Aerospace Sciences Meeting, New York, USA, pp. 1-17.
  5. Bhattacharya, M. and Basak, T. (2016), A review on the susceptor assisted microwave processing of materials, Energy, Vol. 97, pp. 306-338. https://doi.org/10.1016/j.energy.2015.11.034
  6. Blendell, J. E. and Handwerker, C. A. (1986), Effect of chemical composition on sintering of ceramics, Journal of Crystal Growth, Vol. 75, No. 1, pp. 138-160. https://doi.org/10.1016/0022-0248(86)90235-6
  7. Bray, V. J., Atwood-Stone, C., Neish, C. D., Artemieva, N. A., McEwen, A. S. and McElwaine, J. N. (2018), Lobate impact melt flows within the extended ejecta blanket of Pierazzo crater, Icarus, Vol. 301, pp. 26-36. https://doi.org/10.1016/j.icarus.2017.10.002
  8. Bridge, G. (2020), Rare Earth Frontiers: From Terrestrial Subsoils to Lunar Landscapes, Cornell University Press, pp. 41-80.
  9. Calvo, G., Mudd, G., Valero, Alicia and Valero, Antonio (2016), Decreasing ore grades in global metallic mining: A theoretical issue or a global reality?, Resources, Vol. 5, No. 4, pp. 1-14.
  10. Carpenter, J. (2018), Lunar Missions in ESA's Reference Exploration Roadmap, Proc. of Lunar Science for Landed Missions Workshop, SSERVI ID: LLW2018-71.
  11. Chen, T., Chow, B. J., Wang, M., Shi, Y., Zhao, C. and Qiao, Y. (2016), Inorganic-organic hybrid of lunar soil simulant and polyethylene, Journal of Materials in Civil Engineering, Vol. 28, No. 4, pp. 6-9.
  12. Clinton Jr, R. G. (2022), An overview of nasa's initiatives in lunar manufacturing, construction, and outfitting, National Space and M issile M aterials Symposium (NSM M S) and Commercial and Government Responsive Access to Space Technology Exchange (CRASTE) Joint Symposia, USA.
  13. Clinton Jr, R. G., Edmunson, J. E., Effinger, M. R., Fiske, M. R., Ballard, J., Jensen, E., Yashar, M., Ciardullo, C., Morris, M. and Pailes-Friedman10, R. (2022), Moon to Mars Planetary Autonomous Construction Technologies (MMPACT), in ASCEND 2021, pp. 4072, USA.
  14. Colaprete, A., Schultz, P., Heldmann, J., Wooden, D., Shirley, M., Ennico, K., Hermalyn, B., Marshall, W., Ricco, A., Elphic, R. C., Goldstein, D., Summy, D., Bart, G. D., Asphaug, E., Korycansky, D., Landis, D. and Sollitt, L. (2010), Detection of water in the LCROSS ejecta plume, Science, Vol. 330, No. 6003, pp. 463-468. https://doi.org/10.1126/science.1186986
  15. Colwell, J. E., Batiste, S., Horanyi, M., Robertson, S. and Sture, S. (2007), Lunar surface: Dust dynamics and regolith mechanics, Reviews of Geophysics, Vol. 45, No. 2, pp. 1-26.
  16. Ding, L., Zhou, C. and Chen, R. (2018), Lunar construction solution: Chinese Super Mason, Creative Construction Conference 2018, Slovenia, pp. 67-73.
  17. Fain, S., Schiebler, M. L., McCormack, D. G. and Parraga, G. (2010), Imaging of lung function using hyperpolarized helium-3 magnetic resonance imaging: Review of current and emerging translational methods and applications, Journal of Magnetic Resonance Imaging, Vol. 32, No. 6, pp. 1398-1408. https://doi.org/10.1002/jmri.22375
  18. Farries, K. W., Visintin, P., Smith, S. T. and van Eyk, P. (2021), Sintered or melted regolith for lunar construction: state-of-the-art review and future research directions, Construction and Building Materials, Vol. 296, pp. 123627.
  19. Fateri, M., Meurisse, A., Sperl, M., Urbina, D., Madakashira, H.K., Govindaraj, S., Gancet, J., Imhof, B., Hoheneder, W., Waclavicek, R., Preisinger, C., Podreka, E., Mohamed, M. P. and Weiss, P. (2019), Solar sintering for lunar additive manufacturing, Journal of Aerospace Engineering, Vol. 32, No. 6, pp. 1-10.
  20. Freeman, R. H. (2021), STEM: Teaching space science of extraterrestrial development and defense, Journal of Space Operations & Communicator, Vol. 18, No. 3.
  21. Graf, J. C. (1993), Lunar soils grain size catalog, National Aeronautics and Space Administration, research report, USA, pp. 77-80.
  22. Grugel, R. N. and Toutanji, H. (2008), Sulfur 'concrete' for lunar applications - Sublimation concerns, Advances in Space Research, Vol. 41, No. 1, pp. 103-112. https://doi.org/10.1016/j.asr.2007.08.018
  23. Gustafson, R. J., Rice, E. E. and White, B. C. (2005), Carbon reduction of lunar regolith for oxygen production, AIP Conference Proceedings, Vol. 746, pp. 1224-1228.
  24. Haskin, L. A., Helmke, P. A., Allen, R. O., Anderson, M. R., Korotev, R. L. and Zweifel, K. A. (1971), Rare-earth element in Apollo 12 lunar materials, Lunar and Planetary Science Conference Proceedings, pp. 1307-1317.
  25. Hecht, M., Hoffman, J., Rapp, D., McClean, J., SooHoo, J., Schaefer, R., Aboobaker, A., Mellstrom, J., Hartvigsen, J., Meyen, F., Hinterman, E., Voecks, G., Liu, A., Nasr, M., Lewis, J., Johnson, J., Guernsey, C., Swoboda, J., Eckert, C., Alcalde, C., Poirier, M., Khopkar, P., Elangovan, S., Madsen, M., Smith, P., Graves, C., Sanders, G., Araghi, K., de la Torre Juarez, M., Larsen, D., Agui, J., Burns, A., Lackner, K., Nielsen, R., Pike, T., Tata, B., Wilson, K., Brown, T., Disarro, T., Morris, R., Schaefer, R., Steinkraus, R., Surampudi, R., Werne, T. and Ponce, A. (1971), Rare-earth element in Apollo 12 lunar materials, Lunar and Planetary Science Conference Proceedings, pp. 1307-1317.
  26. Hegde, U., Balasubramaniam, R. and Gokoglu, S. (2012), Analysis of water extraction from lunar regolith, 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, pp. 1-11.
  27. Heiken, G. H., Vaniman, D. T. and French, B. M. (1991), Lunar sourcebook: A user's guide to the Moon. 1259th edn. CUP Archive, pp. 121-181.
  28. Hendrix, A. R., Hurley, D. M., Farrell, W. M., Greenhagen, B. T., Hayne, P. O., Retherford, K. D., Vilas, F., Cahill, J. T. S., Poston, M. J. and Liu, Y. (2019), Diurnally migrating lunar water: evidence from ultraviolet data, Geophysical Research Letters, pp. 2417-2424.
  29. Hong, S. and Shin, H. S. (2018), Trend analysis of lunar exploration missions for lunar base construction, Journal of the Korea Academia-Industrial cooperation Society, Vol. 19, No. 7, pp. 144-152. https://doi.org/10.5762/KAIS.2018.19.7.144
  30. Hu, Z., Shi, T., Cen, M., Wang, J., Zhao, X., Zeng, C., Zhou, Y., Fan, Y., Liu, Y. and Zhao, Z. (2022), Research progress on lunar and Martian concrete, Construction and Building Materials, Vol. 343, No. June, pp. 128117.
  31. Imhof, B., Sperl, M., Urbina, D. A., Weiss, P., Preisinger, C., Waclavicek, R., Hoheneder, W., Meurisse, A., Fateri, M., Gobert, T., Peer, M ., Govindaraj, S., M adakashira, H. and Salini, J. (2018), Using solar sintering to build infrastructure on the moon latest advancements in the regolight project, Proceedings of the International Astronautical Congress, IAC, Vol. 2018-Octob, pp. 1-5.
  32. ISECG (2021), In-Situ Resource Utilization Gap Assessment Report, research report, USA, pp. 1-124.
  33. Jin, H. W., Lee, J. G., Ryu, B. H., Shin, H. S. and Kim, Y. J. (2021), The experimental assessment of influence factors on KLS-1 microwave sintering. Journal of the Korean Geotechnical Society, Vol. 37, No. 2, pp. 5-17. https://doi.org/10.7843/KGS.2021.37.2.5
  34. Ju, G. (2016), Development status of domestic & overseas space exploration & associated technology, Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 44, No. 8, pp. 741-757. https://doi.org/10.5139/JKSAS.2016.44.8.741
  35. Khoshnevis, B., Bodiford, M. P., Burks, K. H., Ethridge, E., Tucker, D., Kim, W., Toutanji, H. and Fiske, M. R. (2005), Lunar contour crafting - A novel technique for ISRU-based habitat development, 43rd AIAA Aerospace Sciences Meeting and Exhibit - Meeting Papers, USA, pp. 7397-7409.
  36. Kim, J. S., Jung, H. and Kim, J. H. (2013), State of the art in the development of methane/oxygen liquid-bipropellant rocket engine, Journal of the Korean Society of Propulsion Engineers, Vol. 17, No. 6, pp. 120-130. https://doi.org/10.6108/KSPE.2013.17.6.120
  37. Kim, K. J. (2021), Discovery of water on the moon and its significance of the distribution of water with respect to lunar in-situ resource utilization, JOURNAL OF THE KOREAN SOCIETY OF CIVIL ENGINEERS, Vol. 69, No. 4, pp. 14-23.
  38. Kim, K. J., Lee, J. H., Seo, H., Ju, G., Lee, S. R., Choi, G. H., Sim, E. S. and Lee, T. S. (2014), An introduction to the lunar and planetary science activities in Korea, Advances in Space Research, Vol. 54, No. 10, pp. 2000-2006. https://doi.org/10.1016/j.asr.2013.05.009
  39. Kim, S., Kim, K. J. and Yi, Y. (2022), Investigation on lunar landing candidate sites for a future lunar exploration mission, International Journal of Aeronautical and Space Sciences, Vol. 23, No. 1, pp. 221-232. https://doi.org/10.1007/s42405-021-00433-4
  40. Kim, Y. J., Ryu, B. H., Jin, H., Lee, J. and Shin, H. S. (2021), Microstructural, mechanical, and thermal properties of microwavesintered KLS-1 lunar regolith simulant, Ceramics International, Vol. 47, No. 19, pp. 26891-26897. https://doi.org/10.1016/j.ceramint.2021.06.098
  41. Kleinhenz, J., Paulsen, G., Zacny, K. and Smith, J. (2015), Impact of drilling operations on lunar volatiles capture: Thermal vacuum tests, 8th Symposium on Space Resource Utilization, pp. 1-13.
  42. Kleinhenz, J. E. and Paz, A. (2020), Case studies for lunar isru systems utilizing polar water, Accelerating Space Commerce, Exploration, and New Discovery Conference, ASCEND 2020, pp. 1-13.
  43. Lai, J., Xu, Y., Zhang, X. and Tang, Z. (2016), Structural analysis of lunar subsurface with Chang'E-3 lunar penetrating radar, Planetary and Space Science, Vol. 120, pp. 96-102. https://doi.org/10.1016/j.pss.2015.10.014
  44. Lee, J., Ann, K. Y., Lee, T. S. and M itikie, B. B. (2018), Bottom-up heating method for producing polyethylene lunar concrete in lunar environment, Advances in Space Research, Vol. 62, No. 1, pp. 164-173. https://doi.org/10.1016/j.asr.2018.03.039
  45. Lee, J. Y. and Lee, T. S. (2019), Optimization of material extruding performance to build a 3D printed habitat on the moon and mars, JOURNAL OF THE KOREAN SOCIETY OF CIVIL ENGINEERS, Vol. 39, No. 2, pp. 345-349. https://doi.org/10.12652/KSCE.2019.39.2.0345
  46. Leggett, A. J. (1972), Interpretation of recent results on he below 3 IK: A new liquid phase, Physical review letters, Vol. 29, No. 18, pp. 1227.
  47. Leonard David (2016), Moon village' planned by European Space Agency, Space.com.
  48. Li, C., Wang, C., Wei, Y. and Lin, Y. (2019), China's present and future lunar exploration program, Science, Vol. 365, No. 6450, pp. 238-239. https://doi.org/10.1126/science.aax9908
  49. Li, S., Lucey, P. G., Milliken, R. E., Hayne, P. O., Fisher, E., Williams, J. P., Hurley, D. M. and Elphic, R. C. (2018), Direct evidence of surface exposed water ice in the lunar polar regions, Proceedings of the National Academy of Sciences of the United States of America, Vol. 115, No. 36, pp. 8907-8912. https://doi.org/10.1073/pnas.1802345115
  50. Linne, D. L., Sanders, G. B., Starr, S. O., Eisenman, D. J., Suzuki, N. H., Anderson, M. S., O'Malley, T. F. and Araghi, K. R. (2017), Overview of NASA technology development for In-Situ resource utilization (ISRU), Proceedings of the International Astronautical Congress, IAC, pp. 10372-10381.
  51. Linne, D. L., Schuler, J. M., Sibille, L., Kleinhenz, J. E., Colozza, A. J., J. Fincannon, H., Oleson, S. R., Suzuki, N. H. and Moore, L. (2021), Lunar production system for extracting oxygen from regolith, Journal of Aerospace Engineering, Vol. 34, No. 4, pp. 1-13.
  52. Martin, A. and Iles, A. (2021), The Ethics of Rare Earth Elements Over Time and Space.
  53. M eurisse, A., M akaya, A., Willsch, C. and Sperl, M . (2018), Solar 3D printing of lunar regolith, Acta Astronautica, Vol. 152, pp. 800-810. https://doi.org/10.1016/j.actaastro.2018.06.063
  54. Nakamura, T. and Smith, B. (2011), Solar Thermal System for Lunar ISRU Applications: Development and Field Operation at Mauna Kea, HI, pp. 1-16.
  55. National Aeronautics and Space Administration (2012), The Lunar Sample Compendium, National Aeronautics and Space Administration. Available at: https://curator.jsc.nasa.gov/lunar/lsc/.
  56. NASA Public Affairs Office. (1969), Apollo 11 Press Kit.
  57. Reitz, B., Lotz, C., Gerdes, N., Linke, S., Olsen, E., Pflieger, K., Sohrt, S., Ernst, M., Taschner, P., Neumann, J., Stoll, E. and Overmeyer, L. (2021), Additive manufacturing under lunar gravity and microgravity, Microgravity Science and Technology, Vol. 33, No. 2, pp. 1-12. https://doi.org/10.1007/s12217-020-09852-6
  58. Richard, A. R. and Fan, M. (2018), Rare earth elements: Properties and applications to methanol synthesis catalysis via hydrogenation of carbon oxides, Journal of Rare Earths, Vol. 36, No. 11, pp. 1127-1135. https://doi.org/10.1016/j.jre.2018.02.012
  59. Ryu, B.-H., Wang, C.-C. and Chang, I. (2018), Development and geotechnical engineering properties of KLS-1 lunar simulant, Journal of Aerospace Engineering, Vol. 31, No. 1, pp. 1-11.
  60. Ryu, B. H. (2022a), Drilling for lunar surface exploration and shear strength evaluation based on drilling information, Journal of the Korean Geo-Environmental Society, Vol. 23, No. 10, pp. 21-31. https://doi.org/10.14481/JKGES.2022.23.10.21
  61. Ryu, B. H. (2022b), Research trend and engineering approach on extraterrestrial soil sampling technology, Journal of the Korean Geo-Environmental Society, Vol. 23, No. 7, pp. 11-20. https://doi.org/10.14481/JKGES.2022.23.7.11
  62. Ryu, G. U. and Ryu, B. H. (2022), Geotechnical exploration technologies for space planet mineral resources exploration, Journal of the Korean Geotechnical Society, Vol. 38, No. 9, pp. 19-33. https://doi.org/10.7843/KGS.2022.38.9.19
  63. Sanders, G. B. (2018), Overview of past lunar in situ resource utilization (ISRU) development by NASA, in European Space Agency (ESA) Workshop: Towards the Use of Lunar Resources.
  64. Sargeant, H. M., Abernethy, F. A. J., Anand, M., Barber, S. J., Landsberg, P., Sheridan, S., Wright, I. and Morse, A. (2020), Feasibility studies for hydrogen reduction of ilmenite in a static system for use as an ISRU demonstration on the lunar surface, Planetary and Space Science, Vol. 180, No. November 2018, pp. 104759.
  65. Schluter, L. and Cowley, A. (2020), Review of techniques for In-Situ oxygen extraction on the moon, Planetary and Space Science, Vol. 181, No. April 2019, pp. 104753.
  66. Schwandt, C., Hamilton, J. A., Fray, D. J. and Crawford, I. A. (2012), The production of oxygen and metal from lunar regolith, Planetary and Space Science, Vol. 74, No. 1, pp. 49-56. https://doi.org/10.1016/j.pss.2012.06.011
  67. Senior, C. (1992), Lunar oxygen production by pyrolysis, AIAA Space Programs and Technologies Conference.
  68. Shaw, M., Humbert, M., Brooks, G., Rhamdhani, A., Duffy, A. and Pownceby, M. (2022), Mineral processing and metal extraction on the lunar surface - challenges and opportunities, Mineral Processing and Extractive Metallurgy Review, Vol. 43, No. 7, pp. 865-891. https://doi.org/10.1080/08827508.2021.1969390
  69. Shen, Z., Johnsson, M., Zhao, Z. and Nygren, M. (2002), Spark plasma sintering of alumina, Journal of the American Ceramic Society, Vol. 85, No. 8, pp. 1921-1927. https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  70. Shi, H., Li, P., Yang, Z., Zheng, K., Du, K., Guo, L., Yu, R., Wang, P., Yin, H. and Wang, D. (2022), Extracting oxygen from Chang'e-5 lunar regolith simulants, ACS Sustainable Chemistry and Engineering, Vol. 10, No. 41, pp. 13661-13668. https://doi.org/10.1021/acssuschemeng.2c03545
  71. Sik Lee, T., Lee, J. and Yong Ann, K. (2015), Manufacture of polymeric concrete on the Moon, Acta Astronautica, Vol. 114, pp. 60-64. https://doi.org/10.1016/j.actaastro.2015.04.004
  72. Song, H., Zhang, J., Sun, Y., Li, Y., Zhang, X., Ma, D. and Kou, J. (2021), Theoretical study on thermal release of helium-3 in lunar ilmenite, Minerals, Vol. 11, No. 3, pp. 1-14.
  73. Taylor, L. A. and Meek, T. T. (2005), Microwave sintering of lunar soil: properties, theory, and practice, Journal of Aerospace Engineering, Vol. 18, No. 3, pp. 188-196. https://doi.org/10.1061/(ASCE)0893-1321(2005)18:3(188)
  74. Toutanji, H. A., Evans, S. and Grugel, R. N. (2012), Performance of lunar sulfur concrete in lunar environments, Construction and Building Materials, Vol. 29, pp. 444-448. https://doi.org/10.1016/j.conbuildmat.2011.10.041
  75. Travel to the Moon (2022), Korea Aerospace Research Institute, Available at: https://www.kari.re.kr/kor.do.
  76. Urbina, D. A., M adakashira, H. K., Salini, J., Govindaraj, S., Bjoerstad, R., Gancet, J., Sperl, M., Meurisse, A., Fateri, M., Imhof, B., Hoheneder, W., Weiss, P., Peer, M. M. and Prodeka, E. (2017), Robotic prototypes for the solar sintering of regolith on the lunar surface developed within the Regolight project, Proceedings of the International Astronautical Congress, IAC, Vol. 4, pp. 2632-2641.
  77. Wilson, J. D. (2018), Whatever happened to the rare earths weapon? Critical materials and international security in Asia, Asian Security, Vol. 14, No. 3, pp. 358-373. https://doi.org/10.1080/14799855.2017.1397977
  78. Xu, J., Sun, X., Cao, H., Tang, H., Honglin Ma, L.S., Li, X., Duan, X. and Liu, J. (2019), 3D printing of hypothetical brick by selective laser sintering using lunar regolith simulant and ilmenite powders, in In 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Subdiffractionlimited Plasmonic Lithography and Innovative Manufacturing Technology, pp. 38-48.
  79. Zhang, X., Khedmati, M ., Kim, Y. R., Shin, H. S., Lee, J., Kim, Y. J. and Cui, B. (2020), Microstructure evolution during spark plasma sintering of FJS-1 lunar soil simulant, Journal of the American Ceramic Society, Vol. 103, No. 2, pp. 899-911. https://doi.org/10.1111/jace.16808
  80. 이수정 (2022), 지오폴리머 기술의 달 기지 건설에의 적용, in 한국항공우주학회, pp. 499-500.
  81. 이종원, 김연규, 이주희 (2020), 생명유지시스템의 지상시험모듈 개념설계 및 유동해석, 한국정밀공학회 2020년도 통합학술대회논문집, pp. 20PP05-048.
  82. 한국건설기술연구원 (2021), 극한건설 환경구현 인프라 및 TRL6 이상급 극한건설 핵심기술 개발 (VI), 건기연 21-074, 연구보고서.