DOI QR코드

DOI QR Code

Novel approach to improve nano green mortar behaviour using nano-paper waste with nano-metakaolin

  • Radwa Defalla Abdel, Hafez (Civil and Architectural Constructions Department, Faculty of Technology and Education, Sohag University) ;
  • Bassam A., Tayeh (Civil Engineering Department, Faculty of Engineering, Islamic University of Gaza) ;
  • Raghda Osama Abd-Al, Ftah (Housing and Building National Research Center) ;
  • Khaled, Abdelsamie (Faculty of Engineering, Civil Department, Sohag University)
  • 투고 : 2022.04.27
  • 심사 : 2022.09.28
  • 발행 : 2022.11.25

초록

Treatment of solid waste building materials is a crucial method of disposal and an area of ongoing research. New standards for the treatment of solid waste building materials are necessary due to multisource features, huge quantities, and complicated compositions of solid waste. In this research, sustainable nanomaterial mixtures containing nano-paper waste (NPW) and nano-metakaolin (NMK) were used as a substitute for Portland cement. Portland cement was replaced with different ratios of NPW and NMK (0%, 4%, 8%, and 12% by weight of cement) while the cement-to-water ratio remained constant at 0.4 in all mortar mixtures. The fresh properties had a positive effect on them, and with the increase in the percentage of replacement, the fresh properties decreased. The results of compressive strength at 7 and 28 days and flexural strength at 28 days show that the nanomaterials improved the strength, but the results of NMK were better than those of NPW. The best replacement rate was 8%, followed by 4%, and finally 12% for both materials. The combination of NMK and NPW as a replacement (12% NMK + 12% NPW) showed less shrinkage than the others because of the high pozzolanic reactivity of the nanomaterials. The combination of NMK and NPW improved the microstructure by increasing the hydration volume and lowering the water in the cement matrix, as clearly observed in the C-S-H decomposition.

키워드

참고문헌

  1. Abu Al-Rub, R.K., Tyson, B.M., Yazdanbakhsh, A. and Grasley, Z. (2012), "Mechanical properties of nanocomposite cement incorporating surface-treated and untreated carbon nanotubes and carbon nanofibers", J. Nanomech. Micromech., 2(1), 1-6. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000041
  2. Ahmad, J., Aslam, F., Martinez-Garcia, R., de-Prado-Gil, J., Qaidi, S. and Brahmia, A. (2021), "Effects of waste glass and waste marble on mechanical and durability performance of concrete", Scientific Reports, 11(1), 1-17. http://dx.doi: 10.1038/s41598-021-00994-0
  3. Ahmed, H.U., Mohammed, A.S., Faraj, R.H., Qaidi, S.M. and Mohammed, A.A. (2022), "Compressive strength of geopolymer concrete modified with nano-silica: Experimental and modeling investigations", Case Studies Constr. Mater., 16, e01036. http://dx.doi.org/10.1016/j.cscm.2022.e01036
  4. Akinwumi, I.I., Olatunbosun, O.M., Olofinnade, O.M. and Awoyera, P.O. (2014), "Structural evaluation of lightweight concrete produced using waste newspaper and office paper", Civil Environ. Res., 6(7), 160-167.
  5. Al-Rifaie, W.N. and Ahmed, W.K. (2016), "Effect of nanomaterials in cement mortar characteristics", J. Eng. Sci. Technol., 11(9), 1321-1332.
  6. Ali, A., Hashmi, H.N. and Baig, N. (2013), "Treatment of the paper mill effluent - A review", Annals Faculty Eng. Hunedoara, 11(3), 337. https://doi.org/10.1016/S0960-8524(00)00060-2
  7. Amaral, L.F., Delaqua, G.C.G., Nicolite, M., Marvila, M.T., de Azevedo, A.R., Alexandre, J., Vieira, C.M.F. and Monteiro, S.N. (2020), "Eco-friendly mortars with addition of ornamental stone waste-A mathematical model approach for granulometric optimization", J. Cleaner Product., 248, 119283. https://doi.org/10.1016/j.jclepro.2019.119283
  8. ASTM 150-04 (2004), Standard Specification for Portland Cement, Annual Book of ASTM Standards 4.
  9. Azar, J.P., Najarchi, M., Sanaati, B., Najafizadeh, M.M. and Mirhosseini, S.M. (2019), "The Experimental Assessment of the Effect of Paper Waste Ash and Silica Fume on Improvement of Concrete Behavior", KSCE J. Civil Eng., 23(10), 4503-4515. https://doi.org/10.1007/s12205-019-0678-x
  10. BSI (2005), BS EN 196-1: Methods of testing cement. Determination of strength, BSI London, UK.
  11. Cardoza, C., Nagtode, V., Pratap, A. and Mali, S.N. (2022), "Emerging Applications of Nanotechnology in Cosmeceutical Health Science: Latest Updates", Health Sciences Review, p. 100051. https://doi.org/10.1016/j.hsr.2022.100051
  12. Edalat-Behbahani, A., Soltanzadeh, F., Emam-Jomeh, M. and Soltan-Zadeh, Z. (2021), "Sustainable approaches for developing concrete and mortar using waste seashell", Eur. J. Environ. Civil Eng., 25(10), 1874-1893. https://doi.org/10.1080/19648189.2019.1607780
  13. EN (2002), Mixing water for concrete, British Standard Institution London, UK.
  14. EN 196-1 (2005), Methods of testing cement: Determination of strength, British Standard Institution, London, UK.
  15. Fan, Y.F., Zhang, S.Y. and Shah, S.P. (2016), "Influence of nanoclay on concrete subjected to freeze-thaw cycles and bond behavior between rebar and concrete", In: Key Engineering Materials, Vol. 711, pp. 256-262. https://doi.org/10.4028/www.scientific.net/KEM.711.256
  16. Faraj, R.H., Ahmed, H.U., Rafiq, S., Sor, N.H., Ibrahim, D.F. and Qaidi, S.M. (2022), "Performance of Self-Compacting Mortars Modified with Nanoparticles: A Systematic Review and Modeling", Cleaner Materials, p. 100086. https://doi.org/10.1016/j.clema.2022.100086
  17. Farzadnia, N., Noorvand, H., Yasin, A.M. and Aziz, F.N.A. (2015), "The effect of nano silica on short term drying shrinkage of POFA cement mortars", Constr. Build. Mater., 95, 636-646. https://doi.org/10.1016/j.conbuildmat.2015.07.132
  18. Haruehansapong, S., Pulngern, T. and Chucheepsakul, S. (2017), "Effect of nanosilica particle size on the water permeability, abrasion resistance, drying shrinkage, and repair work properties of cement mortar containing nano-SiO2", Adv. Mater. Sci. Eng. https://doi.org/10.1155/2017/4213690
  19. Hornyak, G.L., Moore, J.J., Tibbals, H.F. and Dutta, J. (2018), Fundamentals of Nanotechnology, CRC press. https://doi.org/10.1201/9781315222561
  20. Hosan, A., Shaikh, F.U.A., Sarker, P. and Aslani, F. (2021), "Nano-and micro-scale characterisation of interfacial transition zone (ITZ) of high volume slag and slag-fly ash blended concretes containing nano SiO2 and nano CaCO3", Constr. Build. Mater., 269, 121311. https://doi.org/10.1016/j.conbuildmat.2020.121311
  21. Inkson, B.J. (2016), "Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization", In: Materials Characterization using Nondestructive Evaluation (NDE) Methods, pp. 17-43. https://doi.org/10.1016/B978-0-08-100040-3.00002
  22. Itim, A., Ezziane, K. and Kadri, E.H. (2011), "Compressive strength and shrinkage of mortar containing various amounts of mineral additions", Constr. Build. Mater., 25(8), 3603-3609. https://doi.org/10.1016/j.conbuildmat.2011.03.055
  23. Jaradat, O.Z., Gadri, K., Tayeh, B.A. and Guettalaa, A. (2021), "Influence of sisal fibres and rubber latex on the engineering properties of sand concrete", Struct. Eng. Mech., Int. J., 80(1), 47-62. https://doi.org/10.12989/sem.2021.80.1.047
  24. Kaufman, S.M. and Themelis, N.J. (2009), "Using a direct method to characterize and measure flows of municipal solid waste in the United States", J. Air Waste Manage. Assoc., 59(12), 1386-1390. https://doi.org/10.3155/1047-3289.59.12.1386
  25. Konsta-Gdoutos, M.S., Metaxa, Z.S. and Shah, S.P. (2010), "Highly dispersed carbon nanotube reinforced cement based materials", Cement Concrete Res., 40(7), 1052-1059. https://doi.org/10.1016/j.cemconres.2010.02.015
  26. Lv, S., Ma, Y., Qiu, C., Sun, T., Liu, J. and Zhou, Q. (2013), "Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites", Constr. Build. Mater., 49, 121-127. https://doi.org/10.1016/j.conbuildmat.2013.08.022
  27. Ma, P.C., Mo, S.Y., Tang, B.Z. and Kim, J.K. (2010), "Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites", Carbon, 48(6), 1824-1834. https://doi.org/10.1016/j.carbon.2010.01.028
  28. Mansi, A., Sor, N.H., Hilal, N. and Qaidi, S.M. (2022), "The impact of nano clay on normal and high-performance concrete characteristics: a review", IOP Conference Series: Earth and Environmental Science, Vol. 961, No. 1, p. 012085. https://doi.org/10.1088/1755-1315/961/1/012085
  29. Mastronardi, E., Tsae, P., Zhang, X., Monreal, C. and DeRosa, M.C. (2015), "Strategic role of nanotechnology in fertilizers: potential and limitations", Nanotechnol. Food Agricul., pp. 25-67. https://doi.org/10.1007/978-3-319-14024-7_2
  30. Mohammadhosseini, H., Lim, N.H.A.S., Tahir, M.M., Alyousef, R., Alabduljabbar, H. and Samadi, M. (2019), "Enhanced performance of green mortar comprising high volume of ceramic waste in aggressive environments", Construction and Building Materials, 212, 607-617. https://doi.org/10.1016/j.conbuildmat.2019.04.024
  31. Monteiro, P.J., Kirchheim, A.P., Chae, S., Fischer, P., MacDowell, A.A., Schaible, E. and Wenk, H.R. (2009), "Characterizing the nano and micro structure of concrete to improve its durability", Cement Concrete Compos., 31(8), 577-584. https://doi.org/10.1016/j.cemconcomp.2008.12.007
  32. Morsy, M.S., Al-Salloum, Y.A., Abbas, H. and Alsayed, S.H. (2012), "Behavior of blended cement mortars containing nanometakaolin at elevated temperatures", Constr. Build. Mater., 35, 900-905. https://doi.org/10.1016/j.conbuildmat.2012.04.099
  33. Morsy, M.S., Al-Salloum, Y., Almusallam, T. and Abbas, H. (2014), "Effect of nano-metakaolin addition on the hydration characteristics of fly ash blended cement mortar", J. Thermal Analy. Calorimetry, 116(2), 845-852. https://doi.org/10.1007/s10973-013-3512-6
  34. Paul, S.C., Van Rooyen, A.S., van Zijl, G.P. and Petrik, L.F. (2018), "Properties of cement-based composites using nanoparticles: A comprehensive review", Constr. Build. Mater., 189, 1019-1034. https://doi.org/10.1016/j.conbuildmat.2018.09.062
  35. Pillay, D.L., Olalusi, O.B. and Mostafa, M.M. (2021), "A review of the engineering properties of concrete with paper mill waste ash-towards sustainable rigid pavement construction", Silicon, 13(9), 3191-3207. https://doi.org/10.1007/s12633-020-00664-2
  36. Qian, X., Wang, J., Wang, L. and Fang, Y. (2019), "Enhancing the performance of metakaolin blended cement mortar through in-situ production of nano to sub-micro calcium carbonate particles", Constr. Build. Mater., 196, 681-691. https://doi.org/10.1016/j.conbuildmat.2018.11.134
  37. Raheem, A.A., Abdulwahab, R. and Kareem, M.A. (2021), "Incorporation of metakaolin and nanosilica in blended cement mortar and concrete-A review", J. Cleaner Product., 125852. https://doi.org/10.1016/j.jclepro.2021.125852
  38. Samadi, M., Huseien, G.F., Mohammadhosseini, H., Lee, H.S., Lim, N.H.A.S., Tahir, M.M. and Alyousef, R. (2020), "Waste ceramic as low cost and eco-friendly materials in the production of sustainable mortars", J. Cleaner Product., 266, 121825. https://doi.org/10.1016/j.jclepro.2020.121825
  39. Shanmugavadivu, V., Karthikeyan, B. and Dhinakaran, G. (2014), "Mechanical properties and micro-structure analysis of high-strength concrete with nano-metakaolin", Int. J. Applied Eng. Res., 9, 4093-4106. https://doi.org/10.1063/1.5011540
  40. Shebl, S., Allie, L., Morsy, M. and Aglan, H.A. (2009), "Mechanical behavior of activated nano silicate filled cement binders", J. Mater. Sci., 44(6), 1600-1606. https://doi.org/10.1007/s10853-008-3214-9
  41. Staley, B.F. and Barlaz, M.A. (2009), "Composition of municipal solid waste in the United States and implications for carbon sequestration and methane yield", J. Environ. Eng., 135(10), 901-909. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000032
  42. Standard, A. (2007), "C1437: Standard Test Method for Flow of Hydraulic Cement Mortar", Annual Book of ASTM Standards. https://doi.org/10.1520/C1437-20
  43. Standard, A. (2013), "C192: Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory", Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, USA. https://doi.org/10.1520/C0192_C0192M-15
  44. Sumesh, M., Alengaram, U.J., Jumaat, M.Z., Mo, K.H. and Alnahhal, M.F. (2017), "Incorporation of nano-materials in cement composite and geopolymer based paste and mortar-A review", Constr. Build. Mater., 148, 62-84. https://doi.org/10.1016/j.conbuildmat.2017.04.206
  45. Tahwia, A.M., Heniegal, A., Elgamal, M.S. and Tayeh, B.A. (2021), "The prediction of compressive strength and nondestructive tests of sustainable concrete by using artificial neural networks", Comput. Concrete, Int. J., 27(1), 21-28. https://doi.org/10.12989/cac.2021.27.1.021
  46. Tang, C.Y. and Yang, Z. (2017), Transmission electron microscopy (TEM), In: Membrane Characterization, pp. 145-159.
  47. Tayeh, B.A. and Magbool, H.M. (2021), "Influence of substrate roughness and bonding agents on the bond strength between old and new concrete", Adv. Concrete Constr., Int. J., 12(1), 33-45. https://doi.org/10.12989/acc.2021.12.1.033
  48. Tayeh, B.A., Ibrahim, O. and Mohamed, O. (2020), "Combined effect of lightweight fine aggregate and micro rubber ash on the properties of cement mortar", Adv. Concrete Constr., Int. J., 10(6), 537-546. https://doi.org/10.12989/acc.2020.10.6.537
  49. Tayeh, B.A., Hadzima-Nyarko, M., Zeyad, A.M. and Al-Harazin, S.Z. (2021a), "Properties and durability of concrete with olive waste ash as a partial cement replacement", Adv. Concrete Constr., Int. J., 11(1), 59-71. https://doi.org/10.12989/acc.2021.11.1.059
  50. Tayeh, B.A., Yousif, S.T., Abu Bakar, B.H., Al-Tayeb, M.M., Abdul-Razzak, A.A. and Haido, J.H. (2021b), "Dynamic response of reinforced concrete members incorporating steel fibers with different aspect ratios", Adv. Concrete Constr., Int. J., 11(2), 89-98. https://doi.org/10.12989/acc.2021.11.2.089
  51. Wallbaum, H. and Buerkin, C. (2003), "Concepts and instruments for a sustainable construction sector", Indust. Environ., 26(2), 53-57.
  52. Winey, M., Meehl, J.B., O'Toole, E.T. and Giddings Jr, T.H. (2014), "Conventional transmission electron microscopy", Molecul. Biol. Cell, 25(3), 319-323. https://doi.org/10.1091/mbc.E12-12-0863
  53. Xiao, H., Zhang, F., Liu, R., Zhang, R., Liu, Z. and Liu, H. (2019), "Effects of pozzolanic and non-pozzolanic nanomaterials on cement-based materials", Constr. Build. Mater., 213, 1-9. https://doi.org/10.1016/j.conbuildmat.2019.04.057
  54. Xiaoyu, G., Yingfang, F. and Haiyang, L. (2018), "The compressive behavior of cement mortar with the addition of nano metakaolin", Nanomater. Nanotechnol., 8, 1847980418755599. https://doi.org/10.1177/1847980418755599
  55. Xie, J., Zhang, H., Duan, L., Yang, Y., Yan, J., Shan, D., Liu, X., Pang, J., Chen, Y., Li, X. and Zhang, Y. (2020), "Effect of nano metakaolin on compressive strength of recycled concrete", Constr. Build. Mater., 256, 119393. https://doi.org/10.1016/j.conbuildmat.2020.119393
  56. Yazdanbakhsh, A., Grasley, Z.C., Tyson, B. and Al-Rub, R.A. (2009), "Carbon nano filaments in cementitious materials: some issues on dispersion and interfacial bond", ACI Special Publication, 267, 21-34. https://doi.org/10.14359/51663280
  57. Yazdanbakhsh, A., Grasley, Z., Tyson, B. and Al-Rub, R.K.A. (2010), "Distribution of carbon nanofibers and nanotubes in cementitious composites", Transport. Res. Record, 2142(1), 89-95. https://doi.org/10.3141/2142-13
  58. Zhan, P.M., He, Z.H., Ma, Z.M., Liang, C.F., Zhang, X.X., Abreham, A.A. and Shi, J.Y. (2020), "Utilization of nanometakaolin in concrete: A review", J. Build. Eng., 30, 101259. https://doi.org/10.1016/j.jobe.2020.101259