DOI QR코드

DOI QR Code

Structural stability of laminated composite material for the effectiveness of half axial wave mode: Frequency impact

  • Received : 2021.05.11
  • Accepted : 2022.12.04
  • Published : 2022.11.25

Abstract

This paper depicts the diagram of cylindrical shells as an essential idea. It centers around an outline of exploration and use of cylindrical shell in expansive current circumstance. In view of investigation of the current and prospect of model as a piece of present exploration work, a straightforward contextual analysis is examined with Love's shell theory based on Galerkin's method. The cylindrical shells are attached from one end of the cylindrical shells. The frequencies of ring support shells are investigated against the half axial wave mode. The frequencies increase on increasing the half axial wave mode. Also, the frequencies are downsized with ring supports. The software MATLAB is preferred to others because in this software computing coding is very easy to do. Just single command 'eig' furnishes shell frequencies and mode shapes by calculating eigenvalues and eigenvectors respectively. The shell vibration frequencies for cylindrical shells are compared with those results found in the open literature.

Keywords

References

  1. Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., Int. J., 6(6), 585-610. https://doi.org/10.12989/acc.2018.6.6.585
  2. Amabili, M. (1996), "Free vibration of partially filled horizontal cylindrical shells", J. Sound Vib., 191(5), 757-780. https://doi.org/10.1006/jsvi.1996.0154
  3. Chen, W.Q., Bian, Z.G. and Ding, H.J. (2004), "Three-dimensional vibration analysis of fluid filled orthotropic FGM cylindrical shells", Int. J. Mech. Sci., 463, 159-171. https://doi.org/10.1016/j.ijmecsci.2003.12.005
  4. Del Rosario, R.C.H. and Smith, R.C. (1997), "Spline approximation of thin shell dynamics", Int. J. Numer. Methods Eng., 40(15), 2807-2840. https://doi.org/10.1002/(SICI)1097-0207(19970815)40:15<2807::AID-NME192>3.0.CO;2-H
  5. Demir, A.D. and Livaoglu, R. (2019), "The role of slenderness on the seismic behavior of ground-supported cylindrical silos", Adv. Concrete Constr., Int. J., 7(2), 65-74. https://doi.org/10.12989/acc.2019.7.2.065
  6. Goncalves, P.B. and Batista, R.C. (1988), "Non-linear vibration analysis of fluid-filled cylindrical shells", J. Sound Vib., 127(1), 133-143. https://doi.org/10.1016/0022-460X(88)90354-9
  7. Goncalves, P.B., Silva, F. and del Prado, Z.J. (2006), "Transient stability of empty and fluid-filled cylindrical shells", J. Brazil. Soc. Mech. Sci. Eng., 28, 331-338. https://doi.org/10.1590/S1678-58782006000300011
  8. Greif, R. and Chung, H. (1975), "Vibration of constrained cylindrical shells", Am. Inst, Aeronaut. J., 13, 1190-1198. https://doi.org/10.2514/3.6970
  9. Iqbal, Z., Naeem, M.N. and Sultana, N. (2009), "Vibration characteristics of FGM circular cylindrical shells using wave propagation approach", Acta Mechanica, 208(3-4), 237-248. https://doi.org/10.1007/s00707-009-0141-z
  10. Jiang, J. and Olson, M.D. (1994), "Vibrational analysis of orthogonally stiffened cylindrical shells using super elements", J. Sound Vib., 173, 73-83. https://doi.org/10.1006/jsvi.1994.1218
  11. Kagimoto, H., Yasuda, Y. and Kawamura, M. (2015), "Mechanisms of ASR surface cracking in a massive concrete cylinder", Adv. Concrete Constr., Int. J., 3(1), 39-54. https://doi.org/10.12989/acc.2015.3.1.039
  12. Love, A.E.H. (1888), "XVI. The small free vibrations and deformation of a thin elastic shell", Philosophical Transactions of the Royal Society of London.(A.), (179), 491-546.
  13. Loy, C.T. and Lam, K.Y. (1997), "Vibration of cylindrical shells with ring supports", J. Mech. Eng., 39, 455-471. https://doi.org/10.1016/S0020-7403(96)00035-5
  14. Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stressstrain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., Int. J., 5(5), 539-561. https://doi.org/10.12989/acc.2017.5.5.539
  15. Naeem, M.N. and Sharma, C.B. (2000), "Prediction of natural frequencies for thin circular cylindrical shells", Proceedings of the Institution of Mechanical Engineers, 214, 1313-1328. https://doi.org/10.1243/0954406001523290
  16. Najafizadeh, M.M. and Isvandzibaei, M.R. (2007), "Vibration of functionally graded cylindrical shells based on higher order shear deformation plate theory with ring support", Acta Mechanica, 191, 75-91. https://doi.org/10.1007/s00707-006-0438-0
  17. Natsuki, T. and Endo, M. (2008), "Vibration analysis of fluid filled carbon nanotubes using the wave propagation approach", Appl. Phys. A, 90(3), 441-445. https://doi.org/10.1007/s00339-007-4297-x
  18. Pellicano, F. (2007), "Vibrations of circular cylindrical shells: theory and experiments", J. Sound Vib., 303(1-2), 154-170. https://doi.org/10.1016/j.jsv.2007.01.022
  19. Rayleigh, L. (1884), "On the circulation of air observed in Kundt's tubes, and on some allied acoustical problems", Philosoph. Transact. Royal Soc. London, 175, 1-21. https://doi.org/10.1098/rstl.1884.0002
  20. Samadvand, H. and Dehestani, M. (2020), "A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints", Adv. Concrete Constr., Int. J., 9(1), 43-54. https://doi.org/10.12989/acc.2020.9.1.043
  21. Sofiyev, A.H. and Avcar, M. (2010), "The stability of cylindrical shells containing an FGM layer subjected to axial load on the Pasternak foundation", Eng., 2, 228-236. https://doi.org/10.4236/eng.201.24033
  22. Wang, C.M., Swaddiwudhipong, S. and Tian, J. (1997), "Ritz method for vibration analysis of cylindrical shells with ring stiffeners", J. Eng. Mech., 123, 134-143. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:2(134)
  23. Xuebin, L. (2008), "Study on free vibration analysis of circular cylindrical shellsusing wave propagation", J. Sound Vib., 311, 667-682. https://doi.org/10.1016/j.jsv.2007.09.023
  24. Zhang, X.M. (2002), "Parametric analysis of frequency of rotating laminated composite cylindrical shells with the wave propagation approach", Comput. Methods Appl. Mech. Eng., 191, 2057-2071. https://doi.org/10.1016/S0045-7825(01)00368-1
  25. Zhang, X.M., Liu, G.R. and Lam, K.Y. (2001), "Coupled vibration of fluid-filled cylindrical shells using the wave propagation approach", Appl. Acoust., 62, 229-243. https://doi.org/10.1016/S0003-682X(00)00045-1