DOI QR코드

DOI QR Code

Banana agriculture waste as eco-friendly material in fibre-reinforced concrete: An experimental study

  • Mohammed M., Attia (Civil & Architecture Construction Department, Faculty of Technology and Education, Suez University) ;
  • Abd Al-Kader A., Al Sayed (The High Technological Institute) ;
  • Bassam A., Tayeh (Civil Engineering Department, Faculty of Engineering, Islamic University of Gaza) ;
  • Shymaa M.M., Shawky (The High Technological Institute)
  • 투고 : 2022.04.16
  • 심사 : 2022.11.26
  • 발행 : 2022.11.25

초록

This paper investigates the impact of length and volume fractions (VFs) of banana fibres (BFs) on the mechanical and physical properties of concrete. The mechanical properties were compressive strength, splitting tensile, flexural strength, and bond stress, while the physical properties were unit weight and absorption. The slump test was used to determine workability. The concrete's behaviour with BFs was studied using scanning electron microscopy. Experimental work of concrete mixtures with BFs of various lengths (12 mm, 25 mm, and 35 mm) and VFs (0%, 0.5%, 1.0%, and 1.5%) were carried out. The samples did not indicate any agglomeration of fibres or heterogeneity during mixing. The addition of BFs to concrete with VFs of up to 1.50% for all fibre lengths have a significant impact on mechanical properties, also the longer fibres performed better than shorter ones at all volume fractions of BFs. The mix10, which contain BFs with VFs 1.5% and length 35 mm, demonstrated the highest mechanical properties. The compressive strength, splitting tensile, flexural strength, and bond stress of the mix10 were 37.71 MPa, 4.27 Mpa, 6.12 MPa, and 6.75 MPa, an increase of 7.37%, 20.96%, 24.13%, and 11.2% over the reference concrete, which was 35.12 MPa, 3.53 MPa, 4.93 MPa, and 6.07 MP, respectively. The absorption is increased for all lengths by increasing the VFs up to 1.5%. Longer fibres have lower absorption, while shorter fibres have higher absorption. The mix8 had the highest absorption of 4.52%, compared to 3.12% for the control mix. Furthermore, the microstructure of concrete was improved through improved bonding between the fibres and the matrix, which resulted in improved mechanical properties of the composite.

키워드

참고문헌

  1. Abdelsamie, K., Agwa, I.S., Tayeh, B.A. and Hafez, R.D.A. (2021), "Improving the brittle behaviour of high-strength concrete using keratin and glass fibres", Adv. Concrete Constr., Int. J., 12(6), 469-477. https://doi.org/10.12989/acc.2021.12.6.469
  2. Abdul-Rahman, M., Al-Attar, A.A., Hamada, H.M. and Tayeh, B. (2020), "Microstructure and structural analysis of polypropylene fibre reinforced reactive powder concrete beams exposed to elevated temperature", J. Build. Eng., 29, 101167. https://doi.org/10.1016/j.jobe.2019.101167
  3. ACI 211.1-91 (2002), Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concretee.
  4. ACI 544.1R-96 (2002), Report on Fiber Reinforced Concrete.
  5. Ahamed, M.S., Ravichandran, P. and Krishnaraja, A.R. (2021), "Natural fibers in concrete-A review", Mater. Sci. Eng., Vol. 1055, No. 1, p. 012038. https://doi.org/10.1088/1757-899X/1055/1/012038
  6. Ahmad, J., Gonzalez-Lezcano, R.A., Majdi, A., Ben Kahla, N., Deifalla, A.F. and El-Shorbagy, M.A. (2022), "Glass Fibers Reinforced Concrete: Overview on Mechanical, Durability and Microstructure Analysis", Materials, 15, 5111. https://doi.org/10.3390/ma15155111
  7. Al-Oraimi, S.K. and Seibi, A.C. (1995), "Mechanical characterisation and impact behaviour of concrete reinforced with natural fibres", Compos. Struct., 32(1-4), 165-171. https://doi.org/10.1016/0263-8223(95)00043-7
  8. Alhijazi, M., Zeeshan, Q., Qin, Z., Safaei, B. and Asmael, M. (2020), "Finite element analysis of natural fibers composites: A review", Nanotechnol. Rev., 9, 853-875. https://doi.org/10.1515/ntrev-2020-0069
  9. Ali, M.F., Ali, S.H., Ahmed, M.T., Patel, S.K. and Ali, M.W. (2020), "Study on strength parameters of concrete by adding banana fibers", Int. Res. J. Eng. Technol., 7(3), 4401-4404.
  10. Alzate Acevedo, S., Diaz Carrillo, A.J., Florez-Lopez, E. and Grande-Tovar, C.D. (2021), "Recovery of banana waste-loss from production and processing: a contribution to a circular economy", Molecules, 26(17), p. 5282. https://doi.org/10.3390/molecules26175282
  11. Amin, M. and Tayeh, B.A. (2020), "Investigating the mechanical and microstructure properties of fibre-reinforced lightweight concrete under elevated temperatures", Case Stud. Constr. Mater., 13, e00459. https://doi.org/10.1016/j.cscm.2020.e00459
  12. Andic-Cakir, O., Sarikanat, M., Tufekci, H.B., Demirci, C. and Erdogan, U.H. (2014), "Physical and mechanical properties of randomly oriented coir fiber-cementitious composites", Composites: Part B, 61, 49-54. https://doi.org/10.1016/j.compositesb.2014.01.029
  13. Anowai, S.I. and Job, O.F. (2017), "Properties of banana fibre reinforced fly ash concrete", Int. J. Modern Trends Eng. Res. (IJMTER), 4(10). https://doi.org/10.21884/ijmter.2017.4331.rifcq
  14. Asteris, P.G., Naseri, H., Hajihassani, M., Kharghani, M. and Chalioris, C.E. (2021), "On the mechanical characteristics of fiber reinforced polymer concrete", Adv. Concrete Constr., Int. J., 12(4), 271-282. https://doi.org/10.12989/acc.2021.12.4.271
  15. ASTM (2015), Standard Test Method for Slump of HydraulicCement Concrete (ASTM C143/C143M-15a), American Society for Testing and Materials, West Conshohocken, PA, USA. https://doi.org/10.1520/C0143_C0143M-15A
  16. ASTM C496/C496M-17 (2017), Standard Test Method for Splitting Tensile of Cylindrical Concrete Specimens, American Society for Testing and Materials, West Conshohocken, PA, USA. https://doi.org/101520/C0496_C0496M-17 101520/C0496_C0496M-17
  17. ASTM C33/C33M-18 (2018), Standard Specification for Concrete Aggregate, American Society for Testing and Materials, West Conshohocken, PA, USA. https://doi.org/10.1520/C0033_C0033M-18
  18. ASTM C78/C78M-18 (2018), Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading, American Society for Testing and Materials, West Conshohocken, PA, USA. https://doi.org/10.1520/C0078_C0078M-18
  19. ASTM C150/C150M-19a (2019), Standard Specification for Portland Cement, American Society for Testing and Materials, West Conshohocken, PA, USA. https://doi.org/10.1520/C0150_C0150M-19A
  20. ASTM C494/C494M-19 (2019), Standard Specification for Chemical Admixtures for Concret, American Society for Testing and Materials, West Conshohocken, PA, USA. https://doi.org/10.1520/C0494_C0494M-19
  21. ASTM C1723-16 (2016), Standard Guide for Examination of Hardened Concrete Using Scanning Electron Microscopy, ASTM International, West Conshohocken, PA, USA.
  22. ASTM C642-97 (2002), Standard test method for density, absorption, and voids in hardened concrete, ASTM International, West Conshohocken, PA, USA
  23. ASTM C856-95 (1998), Standard Practice for Petrographic Examination of Hardened Concrete, ASTM International, West Conshohocken, PA, USA.
  24. Athiappan, K. and Vijaychandrakanth, S. (2014), "Experimental study on flexural behaviour of sisal fiber in reinforced concrete beams", Int. J. Res. Eng. Technol., 3(5), 1500-1505.
  25. Attia, M.M. and Shawky, S.M.M. (2021), "Banana fiber reinforced concrete: A review", New York Sci. J., 14, 48-55. https://doi.org/10.7537/marsnys140121.09
  26. Attia, M.M., Khalil, A.H.H. and Heniegal, A. (2018), Nonlinear Finite Element Analysis of Fibrous Post-tension Concrete, Lambert Academic Publishing.
  27. Attia, M.M., El-Shaer, M.A., Shawky, S.M. and Samaan, M.F. (2022a), "Replacement efficiency of steel reinforcement with FRB bars in RC beams under flexure load: experimental and FE study", Innov. Infrastruct. Solut., 7(5), 1-15. https://doi.org/10.1007/s41062-022-00879-9
  28. Attia, M.M., Ahmed, O., Kobesy, O. and Malek, A.S. (2022b), "Behavior of FRP rods under uniaxial tensile strength with multiple materials as an alternative to steel rebar", Case Stud. Constr. Mater., 17(12), p. e01241. https://doi.org/10.1016/j.cscm.2022.e01241
  29. Balouch, S.U., Forth, J.P. and Granju, J.L. (2010), "Surface corrosion of steel fibre reinforced concrete", Cem. Concr. Res., 40(3), 410-414. https://doi.org/10.1016/j.cemconres.2009.10.001
  30. Batu, T. and Lemu, H.G. (2020), "Investigation of mechanical properties of false banana/glass fibe reinforced hybrid composite materials", Results Mater., 8, p. 100152. https://doi.org/10.1016/j.rinma.2020.100152
  31. Behera, G.C., Panda, S. and Kanda, P. (2020), "Effect of Length of Fibers on Mechanical Properties of Normal Strength Concrete", IOP Conference Series: Mater. Sci. Eng., Vol. 970, No. 1, p. 012020. https://doi.org/10.1088/1757-899X/970/1/012020
  32. Benaimeche, O., Seghir, N.T., Sadowski, L. and Mellas, M. (2020), "The utilization of vegetable fibers in cementitious materials", Encyclopedia of Renewable and Sustainable Materials, 2, 649-662. https://doi.org/10.1016/B978-0-12-803581-8.11596-6
  33. Bentur, A. and Mindess, S. (2007), Fibre Reinforced Cementitious Composites, (2nd edition), Taylor & Francis, London, UK.
  34. Bharathi, S.V., Vinodhkumar, S. and Saravanan, M.M. (2021), "Strength characteristics of banana and sisal fiber reinforced Composites", IOP Conf. Series: Mater. Sci. Eng., Vol. 1055, No. 1, p. 012024. https://doi.org/10.1088/1757-899X/1055/1/012024
  35. Bishetti, P. (2019), "Glass Fiber Reinforced Concrete", SSRG Int. J. Civil Eng., 6(6), 23-26. https://www.researchgate.net/publication/336007464 https://doi.org/10.14445/23488352/IJCE-V6I6P105
  36. BSI (1983), Testing Concrete: Method for Determination of Compressive Strength of Concrete Cubes (BS 1881-116), British Standard Institution, London. UK.
  37. Camargo, M.M., Adefrs Taye, E., Roether, J.A., Tilahun Redda, D. and Boccaccini, A.R. (2020), "A review on natural fiberreinforced geopolymer and cement-based composites", Materials, 13(20), 4603. https://doi.org/10.3390/ma13204603
  38. Campilho, R.D.S.G. (2015), Natural Fiber Composites, Taylor & Francis Group.
  39. Chacko, R., Hema, S. and Vadivel, M. (2016), "Experimental studies on coconut fibre and banana fibre reinforced concrete", Int. J. Earth Sci. Eng., 9(3), 529-533.
  40. Chandramouli, K., Pannirselvam, N., NagaSaiPardhu, D.V. and Anitha, V. (2019), "Experimental investigation on banana fibre reinforced concrete with conventional concrete", Int. J. Recent Technol. Eng. (IJRTE), 7(6).
  41. Dadmand, B., Pourbaba, M., Sadaghian, H. and Mirmiran, A. (2020), "Effectiveness of steel fibers in ultra-high-performance fiber-reinforced concrete construction", Adv. Concrete Constr., Int. J., 10(3), 195-209. https://doi.org/10.12989/acc.2020.10.3.195
  42. Danso, H. (2020), "Influence of plantain pseudostem fibres and lime on the properties of cement mortar", Adv. Mater. Sci. Eng., 2020. https://doi.org/10.1155/2020/4698603
  43. de Azevedo, A.R., Marvila, M.T., Tayeh, B.A., Cecchin, D., Pereira, A.C. and Monteiro, S.N. (2021), "Technological performance of acai natural fibre reinforced cement-based mortars", J. Build. Eng., 33, 101675. https://doi.org/10.1016/j.jobe.2020.101675
  44. El-Sayed, W.S., Heniegal, A.M., Sadek, D.M. and Attia, M.M. (2013), "Investigation of lightweight self-cured concrete incorporating local aggregate'', Eng. Res. J., 138, C16-29.
  45. Elbehiry, A., Elnawawy, O., Kassem, M., Zaher, A., Uddin, N. and Mostafa, M. (2020), "Performance of concrete beams reinforced using banana fiber bars", Case Stud. Constr. Mater., 13, 1-13. https://doi.org/10.1016/j.cscm.2020.e00361
  46. Fediuk, R., Mosaberpanah, M.A. and Lesovik, V. (2020), "Development of fiber reinforced self-compacting concrete (FRSCC): Towards an efficient utilization of quaternary composite binders and fibers", Adv. Concrete Constr., Int. J., 9(4), 387-395. https://doi.org/10.12989/acc.2020.9.4.387
  47. Ganesan, N., Sahana, R. and Indira, P.V. (2017), "Effect of hybrid fibers on tension stiffening of reinforced geopolymer concrete", Adv. Concrete Constr., Int. J., 5(1), 75-86. https://doi.org/10.12989/acc.2017.5.1.075
  48. Garcia, R., Quevedo, J. and Socorro, A. (2020), "Practices for the use of solid waste in banana plantations and results of its implementation", Univ. Soc., 12, 280-291.
  49. George, R.M., Das, B.B. and Goudar, S.K. (2019), "Durability studies on glass fiber reinforced concrete", In: Sustainable Construction and Building Materials, Springer: Berlin/ Heidelberg, Germany, pp. 747-756.
  50. Geremew, A., De Winne, P., Demissie, T.A. and De Backer, H. (2021), "Treatment of natural fiber for application in concrete pavement", Adv. Civil Eng., 2021. https://doi.org/10.1155/2021/6667965
  51. Haido, J.H., Abdul-Razzak, A.A., Al-Tayeb, M.M., Abu Bakar, B.H., Yousif, S.T. and Tayeh, B.A. (2021), "Dynamic response of reinforced concrete members incorporating steel fibers with different aspect ratios", Adv. Concrete Constr., Int. J., 11(2), 89-98. https://doi.org/10.12989/acc.2021.11.2.089
  52. Han, B. and Xiang, T.Y. (2017), "Axial compressive stress-strain relation and Poisson effect of structural lightweight aggregate concrete", Constr. Build. Mater., 146, 338-343. https://doi.org/10.1016/j.conbuildmat.2017.04.101
  53. Indira, K.N., Parameswaranpillai, J. and Thomas, S. (2013), "Mechanical Properties and Failure Topography of Banana Fiber PF Macro-composites Fabricated by RTM and CM Techniques", Int. Schol. Res. Notices. https://doi.org/10.1155/2013/936048
  54. Jaradat, O.Z., Gadri, K., Tayeh, B.A. and Guettalaa, A. (2021), "Influence of sisal fibres and rubber latex on the engineering properties of sand concrete", Struct. Eng. Mech., Int. J., 80(1), 47-62. https://doi.org/10.12989/sem.2021.80.1.047
  55. Jordan, W. and Chester, P. (2017), "Improving the properties of banana fiber reinforced polymeric composites by treating the fibers Procedia engineering", 200, 283-289. https://doi.org/10.1016/j.proeng.2017.07.040
  56. Kesavraman, S. (2017), "Studies on metakaolin based banana fibre reinforced concrete", Int. J. Civil Eng. Technol. (IJCIET), 8(1), 532-543.
  57. Khalil, A., Heniegal, A. and Attia, M. (2018), "Behavior of posttensioned fibrous lightweight concrete beams made of natural pumice", Proceedings of the 2nd International Conference "Sustainable Construction and Project Management Sustainable Infrastructures and Transportation for Future Cities", Aswan, Egypt, December.
  58. Khan, M. and Cao, M. (2019), "Effect of hybrid basalt fiber length and content on properties of cementitious composites", Magaz. Concrete Res., 73(10), 1-42. https://doi.org/10.1680/jmacr.19.00226
  59. Khan, I.U., Gul, A., Khan, K., Akbar, S. and Irfanullah (2022), "Mechanical Properties of Steel-Fiber-Reinforced Concrete", Eng. Proc., 22, 6. https://doi.org/10.3390/engproc2022022006
  60. Kiruthigasri, R. and Sathishkumar, T. (2020), "Strengthening the Properties of Concrete using Banana Fiber and Coconut Fiber", Int. J. Trend Scientif. Res. Develop., 4(4), 111-115.
  61. Kuyu, C.G. and Tola, Y.B. (2018), "Assessment of banana fruit handling practices and associated fungal pathogens in Jimma town market, southwest Ethiopia", Food Sci. Nutr., 6(3), 609-616. https://doi.org/10.1002/fsn3.591
  62. Maia Pederneiras, C., Veiga, R. and de Brito, J. (2021), "Physical and mechanical performance of coir fiber-reinforced rendering mortars", Materials, 14(4), p. 823. https://doi.org/10.3390/ma14040823
  63. Majeed, S.S., Haido, J.H., Atrushi, D.S., Al-Kamaki, Y., Dinkha, Y.Z., Saadullah, S.T. and Tayeh, B.A. (2021), "Properties of self-compacted concrete incorporating basalt fibers: Experimental study and Gene Expression Programming (GEP) analysis", Comput. Concrete, Int. J., 28(5), 451-463. https://doi.org/10.12989/cac.2021.28.5.451
  64. Majid, A. (2012), "Natural fibres as construction materials", J. Civil Eng. Constr. Technol., 3, 80-89. https://doi.org/10.5897/JCECT11.100
  65. Makebo, G.M. and Basa, E.B. (2020), "Investigation on the effect of using banana fiber in normal C-25 Grade concrete", IJARIIE, 6(3).
  66. Mukhopadhyay, S. and Bhattacharjee, B. (2016), "Influence of fibre dispersion on compression strength of banana fibres reinforced concrete", J. Indust. Textil., 45(5), 957-964. https://doi.org/10.1177/1528083714545394
  67. Mukhopadhyay, S. and Khatana, S. (2015), "A review on the use of fibers in reinforced cementitious concrete", J. Industr. Textiles, 45(2), 239-264. https://doi.org/10.1177/1528083714529806
  68. Najaf, E. and Abbasi, H. (2022a), "Using recycled concrete powder, waste glass powder, and plastic powder to improve the mechanical properties of compacted concrete: cement elimination approach", Adv. Civil Eng., 2022. https://doi.org/10.1155/2022/9481466
  69. Najaf, E. and Abbasi, H. (2022b), "Impact resistance and mechanical properties of fiber-reinforced concrete using string and fibrillated polypropylene fibers in a hybrid form", Struct. Concrete. https://doi.org/10.1002/suco.202200019
  70. Najaf, E., Abbasi, H. and Zahrai, S.M. (2022a), "Effect of waste glass powder, microsilica and polypropylene fibers on ductility, flexural and impact strengths of lightweight concrete", Int. J. Struct., 13(3), 511-533. https://doi.org/10.1108/IJSI-03-2022-0039
  71. Najaf, E., Orouji, M. and Zahrai, S.M. (2022b), "Improving nonlinear behavior and tensile and compressive strengths of sustainable lightweight concrete using waste glass powder, nanosilica, and recycled polypropylene fiber", Nonlinear Eng., 11(1), 58-70. https://doi.org/10.1515/nleng-2022-0008
  72. Nurwidayati, R. and Fardheny, A.F. (2021), "Investigation on mechanical properties of fiber reinforced Concrete", In: IOP Conf. Series: Earth Environ. Sci., Vol. 758, No. 1, p. 012016. https://doi.org/10.1088/1755-1315/758/1/012016
  73. Okeola, A.A., Abuodha, S.O. and Mwero, J. (2018), "The effect of specimen shape on the mechanical properties of sisal fiberreinforced Concrete", Open Civil Eng. J., 12(1), 368-382. https://doi.org/10.2174/1874149501812010368
  74. Orouji, M., Zahrai, S.M. and Najaf, E. (2021), "Effect of glass powder & polypropylene fibers on compressive and flexural strengths, toughness and ductility of concrete: An environmental approach", Structures, 33, 4616-4628. https://doi.org/10.1016/j.istruc.2021.07.048
  75. Ozerkan, N.G., Ahsan, B., Mansour, S. and Iyengar, S.R. (2013), "Mechanical performance and durability of treated palm fiber reinforced mortars", Int. J. Sustain. Built Environ., 2, 131-142. https://doi.org/10.1016/j.ijsbe.2014.04.002
  76. Peponi, L., Biagiotti, J., Torre, L., Kenny, J.M. and Mondragon, I. (2008), "Statistical analysis of the mechanical properties of natural fibers and their composite materials. I. Natural fibers", Polym. Compos., 29, 313-320. https://doi.org/10.1002/pc.20408
  77. Plague, T., Desmettre, C. and Charron, J.P. (2017), "Influence of fiber type and fiber orientation on cracking and permeability of reinforced concrete under tensile loading", Cement Concrete Res., 94, 59-70. https://doi.org/10.1016/j.cemconres.2017.01.004
  78. Plizzari, G.A. (1999), "Bond and splitting crack development in normal and high strength fiber reinforced concrete", Proceedings of the 13th Engineering Mechanics Division Conference-EMD99, Baltimore, MD, USA.
  79. Rageh, B.O., El-Mandouh, M.A., Elmasry, A.H. and Attia, M.M. (2022), "Flexural Behavior of RC Beams Strengthened with GFRP Laminate and Retrofitting with Novelty of Adhesive Material", Buildings, 12(9), p. 1444. https://doi.org/10.3390/buildings12091444
  80. Raj, A., Sathyan, D. and Mini, K.M. (2021), "Performance evaluation of natural fiber reinforced high volume fly ash foam concrete cladding", Adv. Concrete Constr., Int. J., 11(2), 151-161. https://doi.org/10.12989/acc.2021.11.2.151
  81. Raja Rajeshwari, B. and Sivakumar, M.V.N. (2020), "Influence of coarse aggregate properties on specific fracture energy of steel fiber reinforced self-compacting concrete", Adv. Concrete Constr., Int. J., 9(2), 173-181. https://doi.org/10.12989/acc.2020.9.2.173
  82. Rehman, A.U. and Sudheer, M. (2019), "Use of Banana Fibres in Concrete to Mitigate Shrinkage Crack Propagation in Concrete Roads", Proceedings of the 1st Conference on Sustainability in Civil Engineering, Islamabad, Pakistan, August.
  83. Saranya, L. and Vijay Vikram, A.S. (2018), "Strengthening the properties of concrete using banana fiber and coconut fiber", Int. Res. J. Adv. Eng., 4(3), 3909-3915.
  84. Savastano Jr, H., Warden, P.G. and Coutts, R.S.P. (2000), "Brazilian waste fibres as reinforcement for cement-based composites", Cement Concrete Compos., 22(5), 379-384. https://doi.org/10.1016/S0958-9465(00)00034-2
  85. Sharma, R. and Bansal, P.P. (2019), "Efficacy of supplementary cementitious material and hybrid fiber to develop the ultra high performance hybrid fiber reinforced concrete", Adv. Concrete Constr., Int. J., 8(1), 21-31. https://doi.org/10.12989/acc.2019.8.1.021
  86. Shi, F., Pham, T.M., Hao, H. and Hao, Y. (2020), "Post-cracking behavior of basalt and macro polypropylene hybrid fber reinforced concrete with different compressive strengths", Constr. Build. Mater., 262, 120108. https://doi.org/10.1016/j.conbuildmat.2020.120108
  87. Song, P.S., Hwang, S. and Sheu, B.C. (2005), "Strength properties of nylon- and polypropylene-fiber-reinforced concretes", Cem. Concr. Res., 35, 1546-1550. https://doi.org/10.1016/j.cemconres.2004.06.033
  88. Thomas, B.C. and Jose, Y.S. (2022), "A study on characteristics of sisal fiber and its performance in fiber reinforced concrete", Mater. Today Proceedings, 51, 1238-1242. https://doi.org/10.1016/j.matpr.2021.07.312
  89. Wu, F., Yu, Q., Liu, C., Brouwers, H.J.H., Wang, L. and Liu, D. (2020), "Effect of fibre type and content on performance of biobased concrete containing heat-treated apricot shell", Mater. Struct., 53(6), p. 137. https://doi.org/10.1617/s11527-020-01570-0
  90. Xiaochun, Q., Xiaoming, L. and Xiaopei, C. (2017), "The applicability of alkaline-resistant glass fibre in cement mortar of road pavement: corrosion mechanism and performance analysis", Int. J. Pavement Res. Technol., 10(6), 536-544. https://doi.org/10.1016/j.ijprt.2017.06.003
  91. Xiong, C., Lan, T., Li, Q., Li, H. and Long, W. (2020), "Study of mechanical properties of an eco-friendly concrete containing recycled carbon fiber reinforced polymer and recycled aggregate", Materials, 13(20), p. 4592. https://doi.org/10.3390/ma13204592
  92. Yazici, S. and Arel, H.S. (2013), "The effect of steel fiber on the bond between concrete and deformed steel bar in SFRCs", Constr. Build. Mater., 40, 299-305. https://doi.org/10.1016/j.conbuildmat.2012.09.098
  93. Yew, M.K., Mahmud, H.B., Ang, B.C. and Yew, M.C. (2015), "Influence of different types of polypropylene fibre on the mechanical properties of high-strength oil palm shell lightweight concrete", Constr. Build. Mater., 90, 36-43. https://doi.org/10.1016/j.conbuildmat.2015.04.024