DOI QR코드

DOI QR Code

Bond strength of deformed steel bars embedded in geopolymer concrete

  • 투고 : 2021.12.07
  • 심사 : 2022.12.06
  • 발행 : 2022.11.25

초록

Geopolymer concrete (GPC) is one of the best substitute materials for conventional concrete in construction. The conventional concrete provided by Portland cement has a detrimental influence on the environment during its production. In this study, the bond strength, which is an important structural property, of deformed steel bars with slag-based GPC was measured. In accordance with the ASTM C234 procedure, bond strength was measured on 18 specimens of slag-based GPC with three sizes of steel bars and different embedded lengths. Two groups of GPC specimens with different compressive strengths, which were cured under ambient conditions, were tested. The results indicated that the bar diameter has a great effect on the bond strength, and the bond strength behavior of the slag-based GPC is comparable with that of conventional concrete. The ACI-318 Code for the bond strength of ordinary Portland cement concrete can be used conservatively to determine the bond strength of the GPC reinforced with deformed steel bars.

키워드

과제정보

The authors would like to express their gratitude to Diar Ahmed Qader, Lateef Ahzee Lateef, and Mohammed Nawzad for their effort in the experimental work.

참고문헌

  1. ACI Committee 318 (2019), Building Code Requirements for Structural Concrete (ACI 318-19): An ACI Standard; Commentary on Building Code Requirements for Structural Concrete (ACI 318R-19), American Concrete Institute, Farmington Hills, MI, USA.
  2. ACI Committee 408 (2003), Bond and Development of Straight Reinforcing Bars in Tension (ACI 408R-03), 49, PDF, American Concrete Institute, Farmington Hills, MI, USA.
  3. Akcaoglu, T., Cubukcuoglu, B. and Awad, A. (2019), "A critical review of slag and fly-ash based geopolymer concrete", Comput. Concrete, Int. J., 24(5), 459-458. https://doi.org/10.12989/cac.2019.24.5.459
  4. Al-Azzawi, M., Yu, T. and Hadi, M.N. (2018), "Factors affecting the bond strength between the fly ash-based geopolymer concrete and steel reinforcement", Structures, 14(2352-0124), 262-272. https://doi.org/10.1016/j.istruc.2018.03.010
  5. Albitar, M., Ali, M., Visintin, P., Lavigne, O. and Gamboa, E. (2016), "Bond stress between reinforcement bars and fly ash-based geopolymer concrete", Proceedings of the 11th fib International PhD Symposium in Civil Engineering, Tokyo, Japan, pp. 543-550. http://hdl.handle.net/2440/101987
  6. ASTM (1991), ASTM-C23-91a Standard Test Method for Comparing Concretes on The Basis of The Bond Developed with Reinforcing Steel, ASTM International; West Conshohocken, PA, USA.
  7. Boopalan, C. and Rajamane, N.P. (2017), "An investigation of bond strength of reinforcing bars in fly ash and GGBS based geopolymer concrete", MATEC Web Conf., 97, p. 01035. https://doi.org/10.1051/matecconf/20179701035
  8. Castel, A. and Foster, S.J. (2015), "Bond strength between blended slag and class F fly ash geopolymer concrete with steel reinforcement", Cement Concrete Res., 72(2015), 48-53. https://doi.org/10.1016/j.cemconres.2015.02.016
  9. Dahou, Z., Castel, A. and Noushini, A. (2016), "Prediction of the steel-concrete bond strength from the compressive strength of portland cement and geopolymer concretes", Constr. Build. Mater., 119(0950-0618), 329-342. https://doi.org/10.1016/j.conbuildmat.2016.05.002
  10. Davidovits, J. (2015), Geopolymer Chemistry and Applications, Saint-Quentin: Institute Geopolymere.
  11. Dewi, E.S. and Ekaputri, J.J. (2017), "The influence of plain bar on bond strength of geopolymer concrete", AIP Conference Proceedings, 1855, p. 030017. https://doi.org/10.1063/1.4985487
  12. Doguparti, R.S. (2015), "A study on bond strength of geopolymer concrete", Int. J. Civil Environ. Eng., 9(3), 355-358. https://doi.org/10.5281/zenodo.1107936
  13. Esparham, A., Moradikhou, A. B., Andalib, F. K. and Avanaki, M. J. (2021), "Strength characteristics of granulated ground blast furnace slag-based geopolymer concrete", Adv. Concrete Constr., Int. J., 11(3), 219-229. https://doi.org/10.12989/acc.2021.11.3.219
  14. Flower, D. and Sanjayan, J.G. (2007), "Green house gas emissions due to concrete manufacture", Int. J. Life Cycle Assess., 12(5), 282-288. https://doi.org/10.1065/lca2007.05.327
  15. Kathirvel, P., Thangavelu, M., Gopalan, R. and Kaliyaperumal, S.R. (2017), "Bond characteristics of reinforcing steel embedded in geopolymer concrete", IOP Publishing, 80, p. 012001. http://dx.doi.org/10.1088/1755-1315/80/1/012001
  16. Kim, D. and Park, K. (2019), "Study on the characteristics of grout material using ground granulated blast furnace slag and carbon fiber", Geomech. Eng., Int. J., 19(4), 361-368. https://doi.org/10.12989/gae.2019.19.4.361
  17. Malhotra, V.M. (2002), "Introduction: sustainable development and concrete technology", Concrete Int., 24(7), 22.
  18. Mohammad, A.H., Abdulrazzaq, N.M. and Mawlood, B.O. (2019), "Bond between steel bar embedded in high strength self-compacting concrete with and without fibers", In: 2019 International Engineering Conference, pp. 227-232. https://doi.org/10.1109/IEC47844.2019.8950515
  19. Nath, P. and Sarker, P.K. (2014), "Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition", Constr. Build. Mater., 66, 163-171. https://doi.org/10.1016/j.conbuildmat.2014.05.080
  20. Nevil, A.M. and Brooks, J.J. (2008), Concrete Technology, Pearson Education, Harlow, Essex, England.
  21. Oluokun, F. (1991), "Prediction of concrete tensile strength from compressive strength: evaluation of existing relations for normal weight concrete", ACI Mater. J., 88(3), 302-309. https://doi.org/10.14359/1942
  22. Phoo-ngernkham, T., Maegawa, A., Mishima, N., Hatanaka, S. and Chindaprasirt, P. (2015), "Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA-GBFS geopolymer", Constr. Build. Mater., 91, 1-8. https://doi.org/10.1016/j.conbuildmat.2015.05.001
  23. Nuroji, Primadyas, D.H., Nurhuda, I. and Muslikh (2018), "The comparison of bond strength between geopolymer concrete and OPC concrete for plain reinforcing bars", MATEC Web Conf., 159, 01017. https://doi.org/10.1051/matecconf/201815901017
  24. Sarker, P.K. (2011), "Bond strength of reinforcing steel embedded in fly ash-based geopolymer concrete", Mater. Struct., 44(5), 1021-1030. https://doi.org/10.1617/s11527-010-9683-8
  25. Schneider, M., Romer, M., Tschudin, M. and Bolio, H. (2011), "sustainable cement production-present and future", Cement Concrete Res., 41(7), 642-650. https://doi.org/10.1016/j.cemconres.2011.03.019
  26. Shariq, M. and Prasad, J. (2019), "Effect of ground granulated blast furnace slag on time-dependent tensile strength of concrete", Comput. Concrete, Int. J., 23(2), 133-143. https://doi.org/10.12989/cac.2019.23.2.133
  27. Wu, C.-H., Chen, C.-J., Lin, Y.-F. and Lin, S.-K. (2021), "Improvement of bond strength and durability of concrete incorporating high volumes of class F fly ash", Adv. Concrete Constr., Int. J., 12(5), 367-375. https://doi.org/10.12989/acc.2021.12.6.367
  28. Zhang, H.Y., Kodur, V., Wu, B., Yan, J. and Yuan, Z.S. (2018), "Effect of temperature on bond characteristics of geopolymer concrete", Constr. Build. Mater., 163(0950-0618), 277-285. https://doi.org/10.1016/j.conbuildmat.2017.12.043