DOI QR코드

DOI QR Code

Biomechanical investigation of maxillary implant-supported full-arch prostheses produced with different framework materials: a finite elements study

  • Mirac Berke Topcu, Ersoz (Department of Prosthodontics, Faculty of Dentistry, Eskisehir Osmangazi University) ;
  • Emre, Mumcu (Department of Prosthodontics, Faculty of Dentistry, Eskisehir Osmangazi University)
  • 투고 : 2022.08.20
  • 심사 : 2022.10.19
  • 발행 : 2022.12.31

초록

PURPOSE. Four and six implant-supported fixed full-arch prostheses with various framework materials were assessed under different loading conditions. MATERIALS AND METHODS. In the edentulous maxilla, the implants were positioned in a configuration of four to six implant modalities. CoCr, Ti, ZrO2, and PEEK materials were used to produce the prosthetic structure. Using finite element stress analysis, the first molar was subjected to a 200 N axial and 45° oblique force. Stresses were measured on the bone, implants, abutment screw, abutment, and prosthetic screw. The Von Mises, maximum, and minimum principal stress values were calculated and compared. RESULTS. The maximum and minimum principal stresses in bone were determined as CoCr < ZrO2 < Ti < PEEK. The Von Mises stresses on the implant, implant screw, abutment, and prosthetic screws were determined as CoCr < ZrO2 < Ti < PEEK. The highest Von Mises stress was 9584.4 Mpa in PEEK material on the prosthetic screw under 4 implant-oblique loading. The highest maximum principal stress value in bone was found to be 120.89 Mpa, for PEEK in 4 implant-oblique loading. CONCLUSION. For four and six implant-supported structures, and depending on the loading condition, the system accumulated different stresses. The distribution of stress was reduced in materials with a high elastic modulus. When choosing materials for implant-supported fixed prostheses, it is essential to consider both the number of implants and the mechanical and physical attributes of the framework material.

키워드

과제정보

The authors acknowledge Fatih Uysal for his contributions to the study.

참고문헌

  1. Emami E, de Souza RF, Kabawat M, Feine JS. The impact of edentulism on oral and general health. Int J Dent 2013;2013:498305.
  2. Att W, Stappert C. Implant therapy to improve quality of life. Quintessence Int 2003;34:573-81.
  3. Heydecke G, Locker D, Awad MA, Lund JP, Feine JS. Oral and general health-related quality of life with conventional and implant dentures. Community Dent Oral Epidemiol 2003;31:161-8. https://doi.org/10.1034/j.1600-0528.2003.00029.x
  4. Resnik R, Misch CE. Prosthetic options in implant dentistry. In: Resnik R, editor. Misch's contemporary implant dentistry. 4th ed. Canada: Elsevier Health Sciences; 2020. p. 436-49.
  5. Malo P, Rangert B, Nobre M. All-on-4 immediate-function concept with Branemark System implants for completely edentulous maxillae: a 1-year retrospective clinical study. Clin Implant Dent Relat Res 2005;7 Suppl 1:S88-94. https://doi.org/10.1111/j.1708-8208.2005.tb00080.x
  6. Malo P, de Araujo Nobre M, Lopes A, Ferro A, Nunes M. The All-on-4 concept for full-arch rehabilitation of the edentulous maxillae: A longitudinal study with 5-13 years of follow-up. Clin Implant Dent Relat Res 2019;21:538-49.
  7. Malo P, de Araujo Nobre M, Lopes A, Francischone C, Rigolizzo M. "All-on-4" immediate-function concept for completely edentulous maxillae: a clinical report on the medium (3 years) and long-term (5 years) outcomes. Clin Implant Dent Relat Res 2012;14 Suppl 1:e139-50. https://doi.org/10.1111/j.1708-8208.2011.00395.x
  8. Bhering CL, Mesquita MF, Kemmoku DT, Noritomi PY, Consani RL, Barao VA. Comparison between all-onfour and all-on-six treatment concepts and framework material on stress distribution in atrophic maxilla: A prototyping guided 3D-FEA study. Mater Sci Eng C Mater Biol Appl 2016;69:715-25. https://doi.org/10.1016/j.msec.2016.07.059
  9. Dayan SC, Geckili O. The influence of framework material on stress distribution in maxillary complete-arch fixed prostheses supported by four dental implants: a three-dimensional finite element analysis. Comput Methods Biomech Biomed Engin 2021;24:1606-17. https://doi.org/10.1080/10255842.2021.1903450
  10. Sirandoni D, Leal E, Weber B, Noritomi PY, Fuentes R, Borie E. Effect of different framework materials in implant-supported fixed mandibular prostheses: a finite element analysis. Int J Oral Maxillofac Implants 2019;34:e107-14. https://doi.org/10.11607/jomi.7255
  11. Shetty R, Singh I, Sumayli HA, Jafer MA, Abdul Feroz SM, Bhandi S, Raj AT, Patil S, Ferrari M. Effect of prosthetic framework material, cantilever length and opposing arch on peri-implant strain in an all-on-four implant prostheses. Niger J Clin Pract 2021;24:866-73. https://doi.org/10.4103/njcp.njcp_398_20
  12. Tribst JPM, Campanelli de Morais D, Melo de Matos JD, Lopes GDRS, Dal Piva AMO, Souto Borges AL, Bottino MA, Lanzotti A, Martorelli M, Ausiello P. Influence of framework material and posterior implant angulation in full-arch all-on-4 implant-supported prosthesis stress concentration. Dent J (Basel) 2022;10:12.
  13. Tiossi R, Gomes EA, Faria ACL, Rodrigues RCS, Ribeiro RF. Biomechanical behavior of titanium and zirconia frameworks for implant-supported full-arch fixed dental prosthesis. Clin Implant Dent Relat Res 2017;19:860-6. https://doi.org/10.1111/cid.12525
  14. Malo P, Nobre Md, Lopes A. The rehabilitation of completely edentulous maxillae with different degrees of resorption with four or more immediately loaded implants: a 5-year retrospective study and a new classification. Eur J Oral Implantol 2011;4:227-43.
  15. Malo P, de Araujo Nobre M, Lopes A, Moss SM, Molina GJ. A longitudinal study of the survival of All-on-4 implants in the mandible with up to 10 years of follow-up. J Am Dent Assoc 2011;142:310-20. https://doi.org/10.14219/jada.archive.2011.0170
  16. Al Jabbari YS, Koutsoukis T, Barmpagadaki X, Zinelis S. Metallurgical and interfacial characterization of PFM Co-Cr dental alloys fabricated via casting, milling or selective laser melting. Dent Mater 2014;30:e79-88.
  17. Ozcan M, Hammerle C. Titanium as a reconstruction and implant material in dentistry: advantages and pitfalls. Materials 2012;5:1528-45 https://doi.org/10.3390/ma5091528
  18. Roach M. Base metal alloys used for dental restorations and implants. Dent Clin North Am 2007;51:603-27. https://doi.org/10.1016/j.cden.2007.04.001
  19. Al-Amleh B, Lyons K, Swain M. Clinical trials in zirconia: a systematic review. J Oral Rehabil 2010;37:641-52. https://doi.org/10.1111/j.1365-2842.2010.02094.x
  20. Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res 2016;60:12-9. https://doi.org/10.1016/j.jpor.2015.10.001
  21. Zoidis P, Papathanasiou I, Polyzois G. The use of a modified Poly-Ether-Ether-Ketone (PEEK) as an alternative framework material for removable dental prostheses. a clinical report. J Prosthodont 2016;25:580-4. https://doi.org/10.1111/jopr.12325
  22. Kelkar KC, Bhat V, Hegde C. Finite element analysis of the effect of framework materials at the bone-implant interface in the all-on-four implant system. Dent Res J (Isfahan) 2021;18:1. https://doi.org/10.4103/1735-3327.310031
  23. Fabris D, Moura JPA, Fredel MC, Souza JCM, Silva FS, Henriques B. Biomechanical analyses of onepiece dental implants composed of titanium, zirconia, PEEK, CFR-PEEK, or GFR-PEEK: Stresses, strains, and bone remodeling prediction by the finite element method. J Biomed Mater Res B Appl Biomater 2022;110:79-88. https://doi.org/10.1002/jbm.b.34890
  24. Reddy MS, Sundram R, Eid Abdemagyd HA. Application of finite element model in implant dentistry: a systematic review. J Pharm Bioallied Sci 2019;11 (Suppl 2):S85-S91.
  25. Lekholm U. Patient selection and preparation. In: Branemark PI, Zarb GA, Albrektsson T, editors. Tissue-integrated prosthesis: osseointegration in clinical dentistry. Chicago: USA; Quintessence Publishing; 1985. p. 199-209.
  26. Barbier L, Vander Sloten J, Krzesinski G, Schepers E, Van der Perre G. Finite element analysis of non-axial versus axial loading of oral implants in the mandible of the dog. J Oral Rehabil 1998;25:847-58. https://doi.org/10.1046/j.1365-2842.1998.00318.x
  27. Ferreira MB, Barao VA, Faverani LP, Hipolito AC, Assuncao WG. The role of superstructure material on the stress distribution in mandibular full-arch implant-supported fixed dentures. A CT-based 3D-FEA. Mater Sci Eng C Mater Biol Appl 2014;35:92-9. https://doi.org/10.1016/j.msec.2013.10.022
  28. Rubo JH, Capello Souza EA. Finite-element analysis of stress on dental implant prosthesis. Clin Implant Dent Relat Res 2010;12:105-13. https://doi.org/10.1111/j.1708-8208.2008.00142.x
  29. Silva GC, Mendonca JA, Lopes LR, Landre J Jr. Stress patterns on implants in prostheses supported by four or six implants: a three-dimensional finite element analysis. Int J Oral Maxillofac Implants 2010;25:239-46.
  30. Faverani LP, Barao VA, Ramalho-Ferreira G, Delben JA, Ferreira MB, Garcia Junior IR, Assuncao WG. The influence of bone quality on the biomechanical behavior of full-arch implant-supported fixed prostheses. Mater Sci Eng C Mater Biol Appl 2014;37:164-70. https://doi.org/10.1016/j.msec.2014.01.013
  31. Sannino G. All-on-4 concept: a 3-dimensional finite element analysis. J Oral Implantol 2015;41:163-71. https://doi.org/10.1563/AAID-JOI-D-12-00312
  32. Begg T, Geerts GA, Gryzagoridis J. Stress patterns around distal angled implants in the all-on-four concept configuration. Int J Oral Maxillofac Implants 2009;24:663-71.
  33. Fazi G, Tellini S, Vangi D, Branchi R. Three-dimensional finite element analysis of different implant configurations for a mandibular fixed prosthesis. Int J Oral Maxillofac Implants 2011;26:752-9.
  34. Almeida EO, Rocha EP, Freitas Junior AC, Anchieta RB, Poveda R, Gupta N, Coelho PG. Tilted and short implants supporting fixed prosthesis in an atrophic maxilla: a 3D-FEA biomechanical evaluation. Clin Implant Dent Relat Res 2015;17 Suppl 1:e332-42. https://doi.org/10.1111/cid.12129
  35. Gokhale NS, Deshpande SS, Bedekar SV, Thite AN. Basics of statics and strength of materials. In: Gokhale NS, editor. Practical finite element analysis. India; Finite to infinite; 2008. p. 35-49.
  36. Heimer S, Schmidlin PR, Roos M, Stawarczyk B. Surface properties of polyetheretherketone after different laboratory and chairside polishing protocols. J Prosthet Dent 2017;117:419-25. https://doi.org/10.1016/j.prosdent.2016.06.016
  37. Nistor L, Gradinaru M, Rica R, Marasescu P, Stan M, Manolea H, Ionescu A, Moraru I. Zirconia use in dentistry - manufacturing and properties. Curr Health Sci J 2019;45:28-35.
  38. Revilla-Leon M, Sanchez-Rubio JL, Perez-Lopez J, Rubenstein J, Ozcan M. Discrepancy at the implant abutment-prosthesis interface of complete-arch cobalt-chromium implant frameworks fabricated by additive and subtractive technologies before and after ceramic veneering. J Prosthet Dent 2021;125:795-803. https://doi.org/10.1016/j.prosdent.2020.03.018
  39. Baggi L, Pastore S, Di Girolamo M, Vairo G. Implant-bone load transfer mechanisms in complete-arch prostheses supported by four implants: a three-dimensional finite element approach. J Prosthet Dent 2013;109:9-21. https://doi.org/10.1016/S0022-3913(13)60004-9
  40. Bayrak A, Yaramanoglu P, Kilicarslan MA, Yaramanoglu B, Akat B. Biomechanical comparison of a new triple cylindrical implant design and a conventional cylindrical implant design on the mandible by three-dimensional finite element analysis. Int J Oral Maxillofac Implants 2020;35:257-64. https://doi.org/10.11607/jomi.7760
  41. Ozan O, Kurtulmus-Yilmaz S. Biomechanical comparison of different implant inclinations and cantilever lengths in all-on-4 treatment concept by three-dimensional finite element analysis. Int J Oral Maxillofac Implants 2018;33:64-71. https://doi.org/10.11607/jomi.6201
  42. Ozdemir Dogan D, Polat NT, Polat S, Seker E, Gul EB. Evaluation of "all-on-four" concept and alternative designs with 3D finite element analysis method. Clin Implant Dent Relat Res 2014;16:501-10. https://doi.org/10.1111/cid.12024
  43. Manchikalapudi G, Basapogu S. Finite element analysis of effect of cusp inclination and occlusal contacts in PFM and PEEK implant-supported crowns on resultant stresses. Med J Armed Forces India 2022;78:80-7. https://doi.org/10.1016/j.mjafi.2020.11.014
  44. Yu W, Chen S, Ma L, Ma X, Xu X. Biomechanical analysis of different framework design, framework material and bone density in the edentulous mandible with fixed implant-supported prostheses: a three-dimensional finite element study. J Prosthodont 2022 May 11. doi: 10.1111/jopr.13532.
  45. Yu W, Li X, Ma X, Xu X. Biomechanical analysis of inclined and cantilever design with different implant framework materials in mandibular complete-arch implant restorations. J Prosthet Dent 2022;127:783.e1-783.e10. https://doi.org/10.1016/j.prosdent.2022.02.018
  46. Jaros OAL, De Carvalho GAP, Franco ABG, Kreve S, Lopes PAB, Dias SC. Biomechanical behavior of an implant system using polyether ether ketone bar: finite element analysis. J Int Soc Prev Community Dent 2018;8:446-50. https://doi.org/10.4103/jispcd.jispcd_183_18