DOI QR코드

DOI QR Code

Analysis of surface characteristics of (Y, Nb)-TZP after finishing and polishing

  • Seong-keun, Yoo (Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Ye-Hyeon, Jo (Dental Research Institute, Seoul National University School of Dentistry) ;
  • In-Sung Luke, Yeo (Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Hyung-In, Yoon (Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Jae-Hyun, Lee (Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Jin-Soo, Ahn (Department of Dental Biomaterials Science and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Jung-Suk, Han (Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University)
  • Received : 2022.08.09
  • Accepted : 2022.10.27
  • Published : 2022.12.31

Abstract

PURPOSE. This in vitro study aimed to evaluate the surface characteristics of a full veneer crown fabricated chairside (CS) from a (Y, Nb)-TZP zirconia block in response to conventional zirconia grinding and polishing. MATERIALS AND METHODS. Zirconia crowns (n = 40) were first prepared and divided into two groups of materials: Labside (LS) and CS, after which each specimen went through a five-step grinding and polishing procedure. Following each surface treatment, surface characteristics were analyzed using confocal laser microscopy (CLSM), average surface roughness (Ra) values were processed from the profile data through Gaussian filtering, and X-ray diffraction pattern analysis was performed to evaluate the monoclinic (M) phase content. Then, a representative specimen was selected for field-emission scanning electron microscopy (FE-SEM), followed by a final analysis of the roughness and X-ray diffraction of the specimens using the independent t-test and repeated measures analysis of variance (RM-ANOVA). RESULTS. In every group, polishing significantly reduced the Ra values (P < .001). There was no significant difference in Ra between the polished state CS and LS. Furthermore, CLSM and FE-SEM investigations revealed that even though grain exposure was visible in CS specimens throughout the as-delivered and ground states, the exposure was reduced after polishing. Moreover, while no phase transformation was visible in the LS, phase transformation was visible in CS after every surface treatment, with the M phase content of the CS group showing a significant reduction after polishing (P < .001). CONCLUSION. Within the limits of this study, clinically acceptable level of surface finishing of (Y, Nb)-TZP can be achieved after conventional zirconia polishing sequence.

Keywords

Acknowledgement

This work was supported using the Korea Medical Device Development Fund grant provided by the Korean Government (Ministry of Science and ICT, Ministry of Trade, Industry and Energy, Ministry of Health & Welfare, and the Ministry of Food and Drug Safety) (KMDF_PR_20200901_0002).

References

  1. Sannino G, Germano F, Arcuri L, Bigelli E, Arcuri C, Barlattani A. Cerec CAD-CAM chairside system. Oral Implantol (Rome) 2015;7:57-70.
  2. Collares K, Correa MB, Laske M, Kramer E, Reiss B, Moraes RR, Huysmans MC, Opdam NJ. A practice-based research network on the survival of ceramic inlay/onlay restorations. Dent Mater 2016;32:687-94. https://doi.org/10.1016/j.dental.2016.02.006
  3. Pieger S, Salman A, Bidra AS. Clinical outcomes of lithium disilicate single crowns and partial fixed dental prostheses: a systematic review. J Prosthet Dent 2014;112:22-30. https://doi.org/10.1016/j.prosdent.2014.01.005
  4. Zarone F, Di Mauro MI, Ausiello P, Ruggiero G, Sorrentino R. Current status on lithium disilicate and zirconia: a narrative review. BMC Oral Health 2019;19:134. https://doi.org/10.1186/s12903-019-0838-x
  5. Lim CH, Jang YS, Lee MH, Bae TS. Evaluation of fracture strength for single crowns made of the different types of lithium disilicate glass-ceramics. Odontology 2020;108:231-9. https://doi.org/10.1007/s10266-019-00460-4
  6. Kern M, Sasse M, Wolfart S. Ten-year outcome of three-unit fixed dental prostheses made from monolithic lithium disilicate ceramic. J Am Dent Assoc 2012;143:234-40. https://doi.org/10.14219/jada.archive.2012.0147
  7. Alao AR, Stoll R, Song XF, Abbott JR, Zhang Y, Abduo J, Yin L. Fracture, roughness and phase transformation in CAD-CAM milling and subsequent surface treatments of lithium metasilicate/disilicate glass-ceramics. J Mech Behav Biomed Mater 2017;74:251-60. https://doi.org/10.1016/j.jmbbm.2017.06.015
  8. Valenti M, Valenti A. Retrospective survival analysis of 261 lithium disilicate crowns in a private general practice. Quintessence Int 2009;40:573-9.
  9. Kaizer MR, Gierthmuehlen PC, Dos Santos MB, Cava SS, Zhang Y. Speed sintering translucent zirconia for chairside one-visit dental restorations: Optical, mechanical, and wear characteristics. Ceram Int 2017;43:10999-1005. https://doi.org/10.1016/j.ceramint.2017.05.141
  10. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater 2008;24:299-307. https://doi.org/10.1016/j.dental.2007.05.007
  11. Ahmed WM, Troczynski T, McCullagh AP, Wyatt CCL, Carvalho RM. The influence of altering sintering protocols on the optical and mechanical properties of zirconia: A review. J Esthet Restor Dent 2019;31:423-30. https://doi.org/10.1111/jerd.12492
  12. Khaledi AAR, Vojdani M, Farzin M, Pirouzi S, Orandi S. The effect of sintering time on the marginal fit of zirconia copings. J Prosthodont 2019;28:e285-9. https://doi.org/10.1111/jopr.12731
  13. Cokic SM, Vleugels J, Van Meerbeek B, Camargo B, Willems E, Li M, Zhang F. Mechanical properties, aging stability and translucency of speed-sintered zirconia for chairside restorations. Dent Mater 2020;36:959-72. https://doi.org/10.1016/j.dental.2020.04.026
  14. Luthardt RG, Holzhuter MS, Rudolph H, Herold V, Walter MH. CAD-CAM-machining effects on Y-TZP zirconia. Dent Mater 2004;20:655-62. https://doi.org/10.1016/j.dental.2003.08.007
  15. Jeong KW, Yoon HI, Lee JH, Yeo IL, Kim DJ, Han JS. Clinical feasibility of fully sintered (Y, Nb)-TZP for CAD-CAM single-unit restoration: a pilot study. Materials (Basel) 2021;14:2762.
  16. Cho JH, Yoon HI, Han JS, Kim DJ. Trueness of the inner surface of monolithic crowns fabricated by milling of a fully sintered (Y, Nb)-TZP block in chairside CADCAM system for single-visit dentistry. Materials (Basel) 2019;12:3253. https://doi.org/10.3390/ma12193253
  17. Aljomard YRM, Altunok EC, Kara HB. Enamel wear against monolithic zirconia restorations: A meta-analysis and systematic review of in vitro studies. J Esthet Restor Dent 2022;34:473-89. https://doi.org/10.1111/jerd.12823
  18. Burgess JO, Janyavula S, Lawson NC, Lucas TJ, Cakir D. Enamel wear opposing polished and aged zirconia. Oper Dent 2014;39:189-94. https://doi.org/10.2341/12-345-L
  19. Janyavula S, Lawson N, Cakir D, Beck P, Ramp LC, Burgess JO. The wear of polished and glazed zirconia against enamel. J Prosthet Dent 2013;109:22-9. https://doi.org/10.1016/S0022-3913(13)60005-0
  20. Mathew MG, Samuel SR, Soni AJ, Roopa KB. Evaluation of adhesion of Streptococcus mutans, plaque accumulation on zirconia and stainless steel crowns, and surrounding gingival inflammation in primary molars: randomized controlled trial. Clin Oral Investig 2020;24:3275-80.
  21. Khayat W, Chebib N, Finkelman M, Khayat S, Ali A. Effect of grinding and polishing on roughness and strength of zirconia. J Prosthet Dent 2018;119:626-31. https://doi.org/10.1016/j.prosdent.2017.04.003
  22. Park C, Vang MS, Park SW, Lim HP. Effect of various polishing systems on the surface roughness and phase transformation of zirconia and the durability of the polishing systems. J Prosthet Dent 2017;117:430-7. https://doi.org/10.1016/j.prosdent.2016.10.005
  23. Caglar I, Ates SM, Yesil Duymus Z. The effect of various polishing systems on surface roughness and phase transformation of monolithic zirconia. J Adv Prosthodont 2018;10:132-7. https://doi.org/10.4047/jap.2018.10.2.132
  24. Huh YH, Park CJ, Cho LR. Evaluation of various polishing systems and the phase transformation of monolithic zirconia. J Prosthet Dent 2016;116:440-9. https://doi.org/10.1016/j.prosdent.2016.01.021
  25. Preis V, Grumser K, Schneider-Feyrer S, Behr M, Rosentritt M. The effectiveness of polishing kits: influence on surface roughness of zirconia. Int J Prosthodont 2015;28:149-51. https://doi.org/10.11607/ijp.4153
  26. De Souza RH, Kaizer MR, Borges CEP, Fernandes ABF, Correr GM, DiOgenes AN, Zhang Y, Gonzaga CC. Flexural strength and crystalline stability of a monolithic translucent zirconia subjected to grinding, polishing and thermal challenges. Ceram Int 2020;46:26168-75. https://doi.org/10.1016/j.ceramint.2020.07.114
  27. Sieper K, Wille S, Kern M. Fracture strength of lithium disilicate crowns compared to polymer-infiltrated ceramic-network and zirconia reinforced lithium silicate crowns. J Mech Behav Biomed Mater 2017;74:342-8. https://doi.org/10.1016/j.jmbbm.2017.06.025
  28. Carrabba M, Vichi A, Vultaggio G, Pallari S, Paravina R, Ferrari M. Effect of finishing and polishing on the surface roughness and gloss of feldspathic ceramic for chairside CAD-CAM systems. Oper Dent 2017;42:175-84. https://doi.org/10.2341/15-174-L
  29. Kosmac T, Oblak C, Marion L. The effects of dental grinding and sandblasting on ageing and fatigue behavior of dental zirconia (Y-TZP) ceramics. J Eur Ceram Soc 2008;28:1085-90. https://doi.org/10.1016/j.jeurceramsoc.2007.09.013
  30. Toraya H, Yoshimura M, Somiya S. Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction. J Am Ceram Soc 1984;67:C-119-C-121.
  31. Lee DY, Kim DJ, Jang JW, Choi DW, Lee SJ. Phase stability of (Y, Nb)-TZP/Al2O3 composites under low temperature hydrothermal conditions. Mater Lett 1999;39:221-6. https://doi.org/10.1016/S0167-577X(99)00010-5
  32. Kim DJ, Jung HJ, Jang JW, Lee HL. Fracture toughness, ionic conductivity, and low-temperature phase stability of tetragonal zirconia codoped with yttria and niobium oxide. J Am Ceram Soc 1998;81:2309-14. https://doi.org/10.1111/j.1151-2916.1998.tb02626.x
  33. Kowalski K, Bernasik A, Camra J, Radecka M, Jedlinski J. Diffusion of niobium in yttria-stabilized zirconia and in titania-doped yttria-stabilized zirconia polycrystalline materials. J Eur Ceram Soc 2006;26:3139-43. https://doi.org/10.1016/j.jeurceramsoc.2005.10.004
  34. Kim DJ, Jung HJ, Cho DH. Phase transformations of Y2O3 and Nb2O5 doped tetragonal zirconia during low temperature aging in air. Solid State Ion 1995;80: 67-73. https://doi.org/10.1016/0167-2738(95)00115-M
  35. Yin L, Nakanishi Y, Alao A-R, Song X-F, Abduo J, Zhang Y. A review of engineered zirconia surfaces in biomedical applications. Procedia CIRP 2017;65:284-90. https://doi.org/10.1016/j.procir.2017.04.057
  36. Shin HS, Lee JS. Comparison of surface topography and roughness in different yttrium oxide compositions of dental zirconia after grinding and polishing. J Adv Prosthodont 2021;13:258-67.
  37. Al-Haj Husain N, Camilleri J, Ozcan M. Effect of polishing instruments and polishing regimens on surface topography and phase transformation of monolithic zirconia: An evaluation with XPS and XRD analysis. J Mech Behav Biomed Mater 2016;64:104-12. https://doi.org/10.1016/j.jmbbm.2016.07.025
  38. Zucuni CP, Guilardi LF, Rippe MP, Pereira GKR, Valandro LF. Fatigue strength of yttria-stabilized zirconia polycrystals: Effects of grinding, polishing, glazing, and heat treatment. J Mech Behav Biomed Mater 2017;75:512-20. https://doi.org/10.1016/j.jmbbm.2017.06.016
  39. Ramos GF, Pereira GK, Amaral M, Valandro LF, Bottino MA. Effect of grinding and heat treatment on the mechanical behavior of zirconia ceramic. Braz Oral Res 2016;30:e12.
  40. Pereira GK, Amaral M, Simoneti R, Rocha GC, Cesar PF, Valandro LF. Effect of grinding with diamond-disc and -bur on the mechanical behavior of a Y-TZP ceramic. J Mech Behav Biomed Mater 2014;37:133-40. https://doi.org/10.1016/j.jmbbm.2014.05.010
  41. Pereira GKR, Fraga S, Montagner AF, Soares FZM, Kleverlaan CJ, Valandro LF. The effect of grinding on the mechanical behavior of Y-TZP ceramics: A systematic review and meta-analyses. J Mech Behav Biomed Mater 2016;63:417-42. https://doi.org/10.1016/j.jmbbm.2016.06.028
  42. Go H, Park H, Lee J, Seo H, Lee S. Effect of various polishing burs on surface roughness and bacterial adhesion in pediatric zirconia crowns. Dent Mater J 2019;38:311-6. https://doi.org/10.4012/dmj.2018-106
  43. Walia T, Brigi C, KhirAllah ARMM. Comparative evaluation of surface roughness of posterior primary zirconia crowns. Eur Arch Paediatr Dent 2019;20:33-40. https://doi.org/10.1007/s40368-018-0382-4
  44. Kozmacs C, Hollmann B, Arnold WH, Naumova E, Piwowarczyk A. Polishing of monolithic zirconia crowns-results of different dental practitioner groups. Dent J (Basel) 2017;5:30. https://doi.org/10.3390/dj5040030
  45. Mohammadi-Bassir M, Babasafari M, Rezvani MB, Jamshidian M. Effect of coarse grinding, overglazing, and 2 polishing systems on the flexural strength, surface roughness, and phase transformation of yttrium-stabilized tetragonal zirconia. J Prosthet Dent 2017;118:658-65. https://doi.org/10.1016/j.prosdent.2016.12.019
  46. Martins FV, Mattos CT, Cordeiro WJB, Fonseca EM. Evaluation of zirconia surface roughness after aluminum oxide airborne-particle abrasion and the erbium-YAG, neodymium-doped YAG, or CO2 lasers: A systematic review and meta-analysis. J Prosthet Dent 2019;121:895-903.e2. https://doi.org/10.1016/j.prosdent.2018.07.001
  47. Zahoui A, Bergamo ET, Marun MM, Silva KP, Coelho PG, Bonfante EA. Cementation protocol for bonding zirconia crowns to titanium base CAD-CAM abutments. Int J Prosthodont 2020;33:527-35.  https://doi.org/10.11607/ijp.6696