DOI QR코드

DOI QR Code

Delamination analysis of multilayered beams with non-linear stress relaxation behavior

  • Victor I., Rizov (Department of Technical Mechanics, University of Architecture, Civil Engineering and Geodesy)
  • Received : 2022.07.18
  • Accepted : 2022.09.07
  • Published : 2022.12.25

Abstract

Delamination of multilayered inhomogeneous beam that exhibits non-linear relaxation behavior is analyzed in the present paper. The layers are inhomogeneous in the thickness direction. The dealamination crack is located symmetrically with respect to the mid-span. The relaxation is treated by applying a non-linear stress-straintime constitutive relation. The material properties which are involved in the constitutive relation are distributed continuously along the thickness direction of the layer. The delamination is analyzed by applying the J-integral approach. A time-dependent solution to the J-integral that accounts for the non-linear relaxation behavior is derived. The delamination is studied also in terms of the time-dependent strain energy release rate. The balance of the energy is analyzed in order to obtain a non-linear time-dependent solution to the strain energy release rate. The fact that the strain energy release rate is identical with the J-integral value proves the correctness of the non-linear solutions derived in the present paper. The variation of the J-integral value with time due to the non-linear relaxation behavior is evaluated by applying the solution derived.

Keywords

References

  1. Arefi, M. (2014), "Nonlinear analysis of a functionally graded beam resting on the elastic nonlinear foundation", J. Theor. Appl. Mech., 44(2), 71-82. https://doi.org/10.2478/jtam-2014-0011.
  2. Arefi, M. (2015), "Elastic solution of a curved beam made of functionally graded materials with different cross section", Steel Compos. Struct., 18(3), 2015, 659-672. https://doi.org/10.12989/scs.2015.18.3.659.
  3. Arefi, M. and Rahimi, G.H. (2013), "Non linear analysis of a functionally graded beam with variable thickness", Sci. Res. Essay., 8(6), 256-264. https://doi.org/10.5897/SRE10.342.
  4. Broek, D. (1986), Elementary Engineering Fracture Mechanics, Springer.
  5. Butcher, R.J., Rousseau, C.E. and Tippur, H.V. (1999), "A functionally graded particulate composite: Measurements and failure analysis", Acta. Mater., 47(2), 259-268. https://doi.org/10.1016/S1359-6454(98)00305-X.
  6. Dolgov, N.A. (2002), "Effect of the elastic modulus of a coating on the serviceability of the substratecoating system", Strength Mater., 37(2), 422-431. https://doi.org/10.1007/s11223-005-0053-7.
  7. Dolgov, N.A. (2005), "Determination of stresses in a two-layer coating", Strength Mater., 37(2), 422-431. https://doi.org/10.1007/s11223-005-0053-7.
  8. Dolgov, N.A. (2016), "Analytical methods to determine the stress state in the substrate-coating system under mechanical loads", Strength Mater., 48(1), 658-667. https://doi.org/10.1007/s11223-016-9809-5.
  9. Dowling, N.E. (2013), Mechanical Behaviour of Materials, Person.
  10. Gasik, M.M. (2010), "Functionally graded materials: Bulk processing techniques", Int. J. Mater. Prod. Technol., 39(1-2), 20-29. https://doi.org/10.1504/IJMPT.2010.034257.
  11. Han, X., Xu, Y.G. and Lam, K.Y. (2001), "Material characterization of functionally graded material by means of elastic waves and a progressive-learning neural network", Compos. Sci. Technol., 61(10), 1401-1411. https://doi.org/10.1016/S0266-3538(01)00033-1.
  12. Hedia, H.S., Aldousari, S.M., Abdellatif, A.K. and Fouda, N.A. (2014), "New design of cemented stem using functionally graded materials (FGM)", Biomed. Mater. Eng., 24(3), 1575-1588. https://doi.org/10.3233/BME-140962.
  13. Hirai, T. and Chen, L. (1999), "Recent and prospective development of functionally graded materials in Japan", Mater Sci. Forum, 308-311(4), 509-514. https://doi.org/10.4028/www.scientific.net/MSF.308-311.509.
  14. Kursun, A. and Topcu, M. (2013), "Thermal stress analysis of functionally graded disc with variable thickness due to linearly increasing temperature load", Arab. J. Sci. Eng., 38, 3531-3549. https://doi.org/10.1007/s13369-013-0626-x.
  15. Kursun, A., Kara, E., Cetin, E., Aksoy, S. and Kesimli, A. (2014), "Mechanical and thermal stresses in functionally graded cylinders", Int. J. Mech., Aerosp., Indus., Mechatron. Manuf. Eng., 8(2), 303-308. https://doi.org/10.5281/zenodo.1090725.
  16. Kursun, A., Topcu, M. and Yucel, U. (2012), "Stress analysis of a rotating FGM circular disc with exponentially-varying properties", Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition IMECE2012, Houston, Texas, November.
  17. Mahamood, R.M. and Akinlabi, E.T. (2017), Functionally Graded Materials, Springer.
  18. Markworth, A.J., Ramesh, K.S. and Parks, Jr. W.P. (1995), "Review: Modeling studies applied to functionally graded materials", J. Mater. Sci., 30(3), 2183-2193. https://doi.org/10.1007/BF01184560.
  19. Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. and Ford, R.G. (1999), Functionally Graded Materials: Design, Processing and Applications, Kluwer Academic Publishers, Dordrecht/London/Boston.
  20. Nemat-Allal, M.M., Ata, M.H., Bayoumi, M.R. and Khair-Eldeen, W. (2011), "Powder metallurgical fabrication and microstructural investigations of Aluminum/Steel functionally graded material", Materi. Sci. Appl., 2(5), 1708-1718. https://doi.org/10.4236/msa.2011.212228.
  21. Nguyen, S.N., Lee, J. and Cho, M. (2015), "Efficient higher-order zig-zag theory for viscoelastic laminated composite plates", Int. J. Solid. Struct., 62, 174-185. https://doi.org/10.1016/j.ijsolstr.2015.02.027.
  22. Nguyen, S.N., Lee, J., Han, J.W. and Cho, M. (2020), "A coupled hygrothermo-mechanical viscoelastic analysis of multilayered composite plates for long-term creep behaviors", Compos. Struct., 242, 112030. https://doi.org/10.1016/j.compstruct.2020.112030.
  23. Rizov, V. (2022), "Effects of periodic loading on longitudinal fracture in viscoelastic functionally graded beam structures", J. Appl. Comput. Mech., 8, 370-378. https://doi.org/10.22055/JACM.2021.37953.3141.
  24. Rizov, V. and Altenbach, H. (2020), "Longitudinal fracture analysis of inhomogeneous beams with continuously varying sizes of the cross-section along the beam length", Frattura ed Integrita Strutturale, 53, 38-50. https://doi.org/10.3221/IGF-ESIS.53.04.
  25. Rizov, V. and Altenbach, H. (2022), "Multilayered frame structure subjected to non-linear creep: A delamination analysis", Couple. Syst. Mech., 11, 217-231. https://doi.org/10.12989/csm.2022.11.3.217.
  26. Rizov, V. and Altenbach, H. (2022a), "Multi-layered non-linear viscoelastic beams subjected to torsion at a constant speed: A delamination analysis", Eng. Trans., 70, 53-66. https://doi.org/10.24423/EngTrans.1720.20220303.
  27. Rizov, V.I. (2019), "Influence of sine material gradients on delamination in multilayered beams", Couple. Syst. Mech., 8(1), 1-17. https://doi.org/10.12989/csm.2019.8.1.001.
  28. Rizov, V.I. (2020), "Longitudinal fracture analysis of inhomogeneous beams with continuously changing radius of cross-section along the beam length", Strength Fract. Complex., 13, 31-43. https://doi.org/10.3233/SFC-200250.
  29. Rizov, V.I. (2020a), "Longitudinal fracture analysis of continuously inhomogeneous beam in torsion with stress relaxation", Struct. Integr. Procedia, 28, 1212-122. https://doi.org/10.1016/j.prostr.2020.11.103.
  30. Saiyathibrahim, A., Subramaniyan, R. and Dhanapl, P. (2016), "Centrefugally cast functionally graded materials-Review", International Conference on Systems, Science, Control, Communications, Engineering and Technology, 68-73.
  31. Shrikantha Rao, S. and Gangadharan, K.V. (2014), "Functionally graded composite materials: an overview", Procedia Mater. Sci., 5(1), 1291-1299. https://doi.org/10.1016/j.mspro.2014.07.442.
  32. Wu, X.L., Jiang, P., Chen, L., Zhang, J.F., Yuan, F.P. and Zhu, Y.T. (2014), "Synergetic strengthening by gradient structure", Mater. Res. Lett., 2(1), 185-191. https://doi.org/10.1080/21663831.2014.935821.