DOI QR코드

DOI QR Code

Evaluation of delamination in the drilling of CFRP composites

  • Feroz, Shaik (Department of Mechanical Engineering, Vignan's foundation for Science, Technology and Research) ;
  • Ramakrishna, Malkapuram (Department of Mechanical Engineering, Vignan's foundation for Science, Technology and Research) ;
  • K. Chandra, Shekar (Department of Mechanical Engineering, Vignan's Institute of Technology and Science) ;
  • P. Dhaval, Varma (Department of Mechanical, Materials and Manufacturing, University of Nottingham)
  • 투고 : 2022.02.06
  • 심사 : 2022.10.28
  • 발행 : 2022.12.25

초록

Carbon Fiber Reinforced Polymer (CFRP) composite provides outstanding mechanical capabilities and is therefore popular in the automotive and aerospace industries. Drilling is a common final production technique for composite laminates however, drilling high-strength composite laminates is extremely complex and challenging. The delamination of composites during the drilling at the entry and exit of the hole has a severe impact on the results of the holes surface and the material properties. The major goal of this research is to investigate contemporary industry solutions for drilling CFRP composites: enhanced edge geometries of cutting tools. This study examined the occurrence of delamination at the entry and exit of the hole during the drilling. For each of the 80°, 90°, and 118°point angle uncoated Brad point, Dagger, and Twist solid carbide drills, Taguchi design of experiments were undertaken. Cutting parameters included three variable cutting speeds (100-125-150 m/min) and feed rates (0.1-0.2-0.3 mm/rev). Brad point drills induced less delamination than dagger and twist drills, according to the research, and the best cutting parameters were found to be a combination of maximum cutting speed, minimum feed rate, and low drill point angle (V:150 m/min, f: 0.1 mm/rev, θ: 80°). The feed rate was determined to be the most efficient factor in preventing hole entry and exit delamination using analysis of variance (ANOVA). Regression analysis was used to create first-degree mathematical models for each cutting tool's entrance and exit delamination components. The results of optimization, mathematical modelling, and experimental tests are thought to be reasonably coherent based on the information obtained.

키워드

과제정보

There are no conflicts among the authors and no external agencies have funded this study.

참고문헌

  1. Abhishek, K., Datta, S. and Mahapatra, S.S. (2016), "Multi-objective optimization in drilling of CFRP (polyester) composites: Application of a fuzzy embedded harmony search (HS) algorithm", Measure., 77, 222-239. https://doi.org/10.1016/j.measurement.2015.09.015.
  2. Abrao, A.M., Rubio, J.C.C., Faria, P.E. and Davim, J.P. (2008), "The effect of cutting tool geometry on thrust force and delamination when drilling glass fibre reinforced plastic composite", Mater. Des., 29(2), 508-513. https://doi.org/10.1016/j.matdes.2007.01.016.
  3. Bayraktar, S. and Turgut, Y. (2020), "Determination of delamination in drilling of carbon fiber reinforced carbon matrix composites/Al 6013-T651 stacks", Measure., 154, 107493. https://doi.org/10.1016/j.measurement.2020.107493.
  4. Caliskan, H., Panjan, P. and Kurbanoglu, C. (2017), Hard Coatings on Cutting Tools and Surface Finish, Elsevier Science Direct, Oxford.
  5. Cetin, M.H., Ozcelik, B., Kuram, E. and Demirbas, E. (2011), "Evaluation of vegetable based cutting fluids with extreme pressure and cutting parameters in turning of AISI 304L by Taguchi method", J. Clean. Prod., 19(17-18), 2049-5056. https://doi.org/10.1016/j.jclepro.2011.07.013.
  6. Davim, J. and Reis, P. (2003), "Study of delamination in drilling carbon fiber reinforced plastics (CFRP) using design experiments", Compos. Struct., 59(4), 481-487. https://doi.org/10.1016/S0263-8223(02)00257-X.
  7. Durao, L.M.P., Goncalves, D.J.S., Tavares, J.M.R.S., de Albuquerque, V.H.C., Aguiar Vieira, A. and Torres Marques, A. (2010), "Drilling tool geometry evaluation for reinforced composite laminates", Compos. Struct., 92(7), 1545-1550. https://doi.org/10.1016/j.compstruct.2009.10.035.
  8. Durao, L.M.P., Tavares, J.M.R., Goncalves de Magalhaes, A., Marques, A.T. and Baptista, A.P.M. (2008), "Damage analysis of carbon/epoxy plates after drilling", Int. J. Mater. Prod. Technol., 32(2-3), 226-242. https://doi.org/10.1504/IJMPT.2008.018983.
  9. El-Sonbaty, I., Khashaba, U.A. and Machaly, T. (2004), "Factors affecting the machinability of GFR/epoxy composites", Compos. Struct., 63(3-4), 329-338. https://doi.org/10.1016/S0263-8223(03)00181-8.
  10. Feroz, S., Malkapuram, R., Shekar, K.C. and Varma, D. (2021), "Analysis of vbo governing sequence to minimize porosity in out-of-autoclave prepregs", Compos. Theory Pract., 21(3), 87-95.
  11. Gaitonde, V.N., Karnik, S.R., Rubio, J.C., Correia, A.E., Abrao, A.M. and Davim, J.P. (2011), "A study aimed at minimizing delamination during drilling of CFRP composites", J. Compos. Mater., 45(22), 2359-2368. https://doi.org/10.1177/0021998311401087.
  12. Geier, N., Davim, J.P. and Szalay, T. (2019), "Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites: A review", Compos. Part A: Appl. Sci. Manuf., 125, 105552. https://doi.org/10.1016/j.compositesa.2019.105552.
  13. Iliescu, D., Gehin, D., Gutierrez, M.E. and Girot, F. (2010), "Modeling and tool wear in drilling of CFRP", Int. J. Mach. Tools Manuf., 50(2), 204-213. https://doi.org/10.1016/j.ijmachtools.2009.10.004.
  14. Jawahir, I.S. and Van Luttervelt, C.A. (1993), "Recent developments in chip control research and applications", CIRP Ann. - Manuf. Technol., 42(2), 659-693. https://doi.org/10.1016/S0007-8506(07)62531-1.
  15. Jia, Z., Chen, C., Wang, F. and Zhang, C. (2020), "Analytical study of delamination damage and delamination-free drilling method of CFRP composite", J. Mater. Process. Technol., 282, 116665. https://doi.org/10.1016/j.jmatprotec.2020.116665.
  16. Karnik, S.R., Gaitonde, V.N., Rubio, J.C., Correia, A.E., Abrao, A.M. and Davim, J.P. (2008), "Delamination analysis in high speed drilling of carbon fiber reinforced plastics (CFRP) using artificial neural network model", Mater. Des., 29(9), 1768-1776. https://doi.org/10.1016/j.matdes.2008.03.014.
  17. Krishnamoorthy, A., Boopathy, S.R., Palanikumar, K. and Davim, J.P. (2012), "Application of grey fuzzy logic for the optimization of drilling parameters for CFRP composites with multiple performance characteristics", Measure., 45(5), 1286-1296. https://doi.org/10.1016/j.measurement.2012.01.008.
  18. Lin, T., Xu, J., Ji, M. and Chen, M. (2021), "Drilling performance of uncoated brad spur tools for high-strength carbon fiber-reinforced polymer laminates", Proc. Inst. Mech. Eng. Part L: J. Mater.: Des. Appl., 235(8), 1879-1889. https://doi.org/10.1177/1464420721990413.
  19. MINITAB® (2019), Release 19.1.1 for Windows®, June.
  20. Palanikumar, K. (2011), "Experimental investigation and optimisation in drilling of GFRP composites", Measure., 44(10), 2138-2148. https://doi.org/10.1016/j.measurement.2011.07.023.
  21. Qiu, X., Li, P., Li, C., Niu, Q., Chen, A., Ouyang, P. and Ko, T.J. (2019), "New compound drill bit for damage reduction in drilling CFRP", Int. J. Precis. Eng. Manuf. - Green Technol., 6, 75-89. https://doi.org/10.1007/s40684-019-00026-3.
  22. Sarikaya, M., Yilmaz, V. and Dilipak, H. (2015), "Modeling and multi-response optimization of milling characteristics based on Taguchi and gray relational analysis", Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf., 230(6), 1049-1065. https://doi.org/10.1177/0954405414565136.
  23. Shaik, F., Ramakrishna, M. and Varma, P.D. (2021), "A review on fabrication of thermoset prepreg composites using out-of-autoclave technology", INCAS Bull., 13(2), 133-149. https://doi.10.13111/2066-8201.2021.13.2.13.
  24. Singh, D., Kumar, R.R., Gaur, P., Rahul, D., Kiran, G.J., Vijay, S., Surya, S., Joshua, J.J. and Subha, S., (2022), "Investigation on drilling response of Carbon-Graphene and Kevlar-Graphene composites", Mater. Today: Proc., 62(2), 755-762. https://doi.org/10.1016/j.matpr.2022.03.671.
  25. Sobri, A.S., Whitehead, D., Mohamed, M., Mohamed, J.J., Mohamad Amini, M.H., Hermawan, A. and Norizan, M.N. (2020), "Augmentation of the delamination factor in drilling of carbon fibre-reinforced polymer composites (CFRP)", Polym., 12(11), 2461. https://doi.org/10.3390/polym12112461.
  26. Stone, R. and Krishnamurthy, K. (1996), "A neural network thrust force controller to minimize delamination during drilling of graphite-epoxy laminates", Int. J. Mach. Tools Manuf., 36(9), 985-1003. https://doi.org/10.1016/0890-6955(96)00013-2.
  27. Subramanian, K. and Cook, N.H. (1997), "Sensing of drill wear and prediction of drill life", ASME J. Eng. Ind., 99(2), 295-301. https://doi.org/10.1115/1.3439211.
  28. Wang, X., Shen, X., Zeng, C. and Sun, F. (2018), "Combined influences of tool shape and as-deposited diamond film on cutting performance of drills for CFRP machining", Surf. Coat. Technol., 347, 390-397. https://doi.org/10.1016/j.surfcoat.2018.05.024.
  29. Xu, J., Li, C., Chen, M., El Mansori, M. and Davim, J.P. (2019), "On the analysis of temperatures, surface morphologies and tool wear in drilling CFRP/Ti6Al4V stacks under different cutting sequence strategies", Compos. Struct., 234(1), 111708. https://doi.org/10.1016/j.compstruct.2019.111708.
  30. Xu, J., Li, C., Mi, S., An, Q. and Chen, M. (2018), "Study of drilling-induced defects for CFRP composites using new criteria", Compos. Struct., 201, 1076-1087. https://doi.org/10.1016/j.compstruct.2018.06.051.
  31. Xu, J., Lin, T. and Davim, J.P. (2022), "On the machining temperature and hole quality of CFRP laminates when using diamond-coated special drills", J. Compos. Sci., 6(2), 45. https://doi.org/10.3390/jcs6020045.
  32. Xu, J., Lin, T., Chen, M. and Davim, J.P. (2021), "Machining responses of high-strength carbon/epoxy composites using diamond-coated brad spur drills". Mater. Manuf. Process., 36(6), 722-729. https://doi.org/10.1080/10426914.2020.1854475
  33. Xu, J., Lin, T., Davim, J.P., Chen, M. and El Mansori, M. (2021), "Wear behaviour of special tools in the drilling of CFRP composite laminates", Wear, 476, 203738. https://doi.org/10.1016/j.wear.2021.203738.
  34. Yashiro, T., Ogawa, T. and Sasahara, H. (2013), "Temperature measurement of cutting tool and machined surface layer in milling of CFRP", Int. J. Mach. Tools Manuf., 70, 63-69. https://doi.org/10.1016/j.ijmachtools.2013.03.009.