References
- Abaqus. (2013), Abaqus 6.13 Analysis User's Guide, Dassault Systemes.
- Abbasnia, R. and Aslami, M. (2015), "Numerical simulation of concrete fracture under compression by explicit discrete element method", Int. J. Civil Eng., 13(3), 245-254. https://doi.org/10.22068/IJCE.13.3.245.
- Abna, A. and Mazloom, M. (2022), "Flexural properties of fiber reinforced concrete containing silica fume and nano-silica", Mater. Lett., 316, 132003. https://doi.org/10.1016/j.matlet.2022.132003.
- ACI 446.3R-97 (1997), Finite Element Analysis of Fracture in Concrete Structures, American Concrete Institute, Farmington Hills, USA.
- Afzali-Naniz, O. and Mazloom, M. (2019), "Fracture behavior of self-compacting semi-lightweight concrete containing nano-silica", Adv. Struct. Eng., 22(10), 2264-2277. https://doi.org/10.1177/1369433219837426.
- Alam, S.Y. and Loukili, A. (2020), "Effect of micro-macro crack interaction on softening behaviour of concrete fracture", Int. J. Solid. Struct., 182, 34-45. https://doi.org/10.1016/j.ijsolstr.2019.08.003.
- ASTM C 469/C 496M. (2004), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International.
- ASTM Standard C469. (2002), Standard Test Method for Static Modulus of Elasticity and Poisson' s Ratio of Concrete in Compression, ASTM International 04: 1-5.
- Barenblatt, G.I. (1962), "The mathematical theory of equilibrium cracks in brittle fracture", Adv. Appl. Mech., 7, 55-129. https://doi.org/10.1016/S0065-2156(08)70121-2.
- Bazant, Z.P. (2003), "Fracture mechanics of concrete: Concepts, models and determination of material properties", FractureMechanics of Concrete Structures, 25-44.
- Bazant, Z.P. (2001), "Concrete fracture models: testing and practice", Eng. Fract. Mech., 69(2), 165-205. https://doi.org/10.1016/S0013-7944(01)00084-4.
- Bazant, Z.P. and Phillip A.P. (1987), "Determination of fracture energy from size effect and brittleness number", ACI Mater. J., 84(6), 463-80. https://doi.org/10.14359/2526.
- Bazant, Z.P. and Planas, J. (2019), Fracture and Size Effect in Concrete and Other Quasibrittle Materials, Routledge, New York, NY, USA.
- Bhosale, A.B., Lakavath, C. and Prakash, S.S. (2020), "Multi-linear tensile stress-crack width relationships for hybrid fibre reinforced concrete using inverse analysis and digital image correlation", Eng. Struct., 225, 111275. https://doi.org/10.1016/j.engstruct.2020.111275.
- Broujerdian, V., Karimpour, H. and Alavikia, S. (2019), "Predicting the shear behavior of reinforced concrete beams using non-linear fracture mechanics", Int. J. Civil Eng., 17(5), 597-605. https://doi.org/10.1007/s40999-018-0336-6.
- Broujerdian, V., Sherafati, A. and Karimpour, H. (2018), "Effect of crack cohesive stresses on the loaddeformation response of reinforced concrete beams", Amirkabir J. Civil Eng., 50(1), 89-96. https://doi.org/10.22060/ceej.2017.11366.5012.
- Broujerdian, V. and Kazemi, M.T. (2016), "Non-linear finite element modeling of shear-critical reinforced concrete beams using a set of interactive constitutive laws", Int. J. Civil Eng., 14(8), 507-519. https://doi.org/10.1007/s40999-016-0024-3.
- Ceb-Fip, Model Code (1990), Design Code, Comite Euro International Du Beton, 51-59. https://doi.org/10.1016/0022-5096(60)90013-2
- Dugdale, D.S. (1960), "Yielding of steel sheets containing slits", J. Mech. Phys. Solid., 8(2), 100-104. https://doi.org/10.1016/0022-5096(60)90013-2.
- Fang, X.D., Jiang, B., Wei, H., Zhou, Y., Jiang, Y. and Lai, H. (2013), "Axial compressive test and study on steel tube confined high strength concrete shear wall", J. Build. Struct., 34(3), 100-109.
- Faria, R., Oliver, J. and Cervera, M. (1998), "A strain-based plastic viscous-damage model for massive concrete structures", Int. J. Solid. Struct., 35(14), 1533-58. https://doi.org/10.1016/S0020-7683(97)00119-4.
- Feng, D.C., Ren, X.D. and Li, J. (2018), "Softened damage-plasticity model for analysis of cracked reinforced concrete structures", J. Struct. Eng., 144(6), 04018044. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002015.
- Gao, D., Ding, C., Pang, Y. and Chen, G. (2021), "An inverse analysis method for multi-linear tensile stresscrack opening relationship of 3D/ 4D/ 5D steel fiber reinforced concrete", Constr. Build. Mater., 309, 125074. https://doi.org/10.1016/j.conbuildmat.2021.125074.
- Guinea, G.V., Planas, J. and Elices, M. (1994), "A general bilinear fit for the softening curve of concrete", Mater. Struct., 27(2), 99-105. https://doi.org/10.1007/BF02472827.
- Gustafsson, P.J. and Hillerborg, A. (1985), "Improvements in concrete design achieved through the application of fracture mechanics", NATO ASI Series, Series E: Appl. Sci., 94, 667-680. https://doi.org/10.1007/978-94-009-5121-1_24.
- Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6(6), 773-781. https://doi.org/10.1016/0008-8846(76)90007-7.
- Hsu, T.T. and Zhu, R.R. (2002), "Softened membrane model for reinforced concrete elements in shear", Struct. J., 99(4), 460-469. https://doi.org/10.14359/12115.
- Ju, J.W. (1989), "On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects", Int. J. Solid. Struct., 25(7), 803-833. https://doi.org/10.1016/0020-7683(89)90015-2.
- Karamloo, M. and Mazloom, M. (2018), "An efficient algorithm for scaling problem of notched beam specimens with various notch to depth ratios", Comput. Concrete, 22(1), 39-51. https://doi.org/10.12989/cac.2018.22.1.039.
- Karimpour, H. and Mazloom, M. (2022), "Pseudo-strain hardening and mechanical properties of green cementitious composites containing polypropylene fibers", Struct. Eng. Mech., 81(5), 575-589. https://doi.org/10.12989/sem.2022.81.5.575.
- Kumar, S. and Barai, S.V. (2011), Concrete Fracture Models and Applications, Springer Berlin, Heidelberg. https://doi.org/10.1061/(ASCE)0733-9399(1998)
- Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892).
- Li, V.C., Chan, C.M. and Leung, C.K. (1987), "Experimental determination of the tension-softening relations for cementitious composites", Cement Concrete Res., 17(3), 441-52. https://doi.org/10.1016/0008-8846(87)90008-1.
- Lu, X.Z., Ye, L.P. and Miao, Z.W. (2009), "Elasto-plastic analysis of buildings against earthquake", China Architecture and Building Press, Beijing.
- Mazloom, M., Karimpanah, H. and Karamloo, M. (2020), "Fracture behavior of monotype and hybrid fiber reinforced self-compacting concrete at different temperatures", Adv. Concrete Constr., 9(4), 375-386. https://doi.10.12989/acc.2020.9.4.375.
- Mazloom, M., Pourhaji, P. and Afzali Naniz, O. (2021), "Effects of halloysite nanotube, nano-silica and micro-silica on rheology, hardened properties and fracture energy of SCLC", Struct. Eng. Mech., 80(1), 91-101. https://doi.org/10.12989/sem.2021.80.1.091.
- Mazloom, M., Pourhaji, P., Shahveisi, M. and Jafari, S.H. (2019), "Studying the Park-Ang damage index of reinforced concrete structures based on equivalent sinusoidal waves", Struct. Eng. Mech., 72(1), 845-859. https://doi.org/10.12989/sem.2019.72.1.083.
- Mazloom, M. and Mirzamohammadi, S. (2019), "Thermal effects on the mechanical properties of cement mortars reinforced with aramid, glass, basalt and polypropylene fibers", Adv. Mater. Res., 8(2),137-154. https://doi.org/10.12989/amr.2019.8.2.137.
- Mazloom, M. and Mirzamohammadi, S. (2021a), "Fracture of fibre-reinforced cementitious composites after exposure to elevated temperatures", Mag. Concrete Res., 73(14), 701-713. https://doi.org/10.1680/jmacr.19.00401.
- Mazloom, M. and Mirzamohammadi, S. (2021b), "Computing the fracture energy of fiber-reinforced cementitious composites using response surface methodology", Adv. Comput. Des., 6(3), 225-239. https://doi.org/10.12989/acd.2021.6.3.225.
- Mehta, P.K. and Monteiro, P.J. (2017), Concrete Microstructure, Properties and Materials, McGraw-Hill Education.
- Van Mier, J.G.M. (1986), "Fracture of concrete under complex stress", Heron, 31(3), 1-90.
- Miller, R.A., Castro-Montero, A. and Shah, S.P. (1991), "Cohesive crack models for cement mortar examined using finite-element analysis and laser holographic measurements", J. Am. Ceram. Soc., 74(1), 130-138. https://doi.org/10.1111/j.1151-2916.1991.tb07308.x.
- Ostergaard, L., Lange, D. and Stang, H. (2004), "Early-age stress-crack opening relationships for high performance concrete", Cement Concrete Compos., 26(5), 563-72. https://doi.org/10.1016/S0958-9465(03)00074-X.
- Pan, Z., Wu, C., Liu, J., Wang, W. and Liu, J. (2015), "Study on mechanical properties of cost-effective polyvinyl alcohol engineered cementitious composites (PVA-ECC)", Constr. Build. Mater., 78, 397-404. https://doi.org/10.1016/j.conbuildmat.2014.12.071.
- Park, K., Paulino, G.H. and Roesler, J.R. (2008), "Determination of the kink point in the bilinear softening model for concrete", Eng. Fract. Mech., 75(13), 3806-3818. https://doi.org/10.1016/j.engfracmech.2008.02.002.
- Pavlovic, M.N. (1996), "Fracture mechanics of concrete: Applications of fracture mechanics to concrete, rock and other quasi-brittle materials", Eng. Struct., 18(11), 887-888. https://doi.org/10.1016/0141-0296(96)84816-4.
- Pavlovic, M., Markovic, Z., Veljkovic, M. and Budevac, D. (2013), "Bolted shear connectors vs. headed studs behaviour in push-out tests", J. Constr. Steel Res., 88, 134-149. https://doi.org/10.1016/j.jcsr.2013.05.003.
- Petersson, P.E. (1981), "Crack growth and development of fracture zones in plain concrete and similar materials", Report No. LUTVDG/TVBM--1006/1-174/(1981); Lund Institute of Technology, Division of Building Materials.
- Reddy, K.C. and Subramaniam, K.V. (2017), "Analysis for multi-linear stress-crack opening cohesive relationship: Application to macro-synthetic fiber reinforced concrete", Eng. Fract. Mech., 169, 128-145. https://doi.org/10.1016/j.engfracmech.2016.11.015.
- Reinhardt, H.W., Cornelissen, H.A. and Hordijk, D.A. (1986), "Tensile tests and failure analysis of concrete", J. Struct. Eng., 112(11), 2462-2477. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:11(2462).
- RILEM, D.R. (1985), "Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams", Mater. Struct., 18(106), 285-290. https://doi.org/10.1007/BF02472917
- RILEM, TC89. (1990), "89-FMT, fracture mechanics of concrete-test methods, size-effect method for determining fracture energy and process zone size of concrete", Mater. Struct., 23, 461-465. https://doi.org/10.1007/BF02472030
- Rots, J.G. and Blaauwendraad, J. (1989), "Crack models for concrete: Discrete or smeared? Fixed multidirectional or rotatin?", Heron, 34(1), 3-59.
- Salehi, H. and Mazloom, M. (2019a), "Effect of magnetic-field intensity on fracture behaviors of selfcompacting lightweight concrete", Mag. Concrete Res., 71(13), 665-679. https://doi.org/10.1680/jmacr.17.00418.
- Salehi, H. and Mazloom, M. (2019b), "An experimental investigation on fracture parameters and brittleness of self-compacting lightweight concrete containing magnetic field treated water", Arch. Civil Mech. Eng., 19(3), 803-819. https://doi.10.1016/j.acme.2018.10.008.
- Shah, S.P. (1990), "Experimental methods for determining fracture process zone and fracture parameters", Eng. Fract. Mech., 35(1-3), 3-14. https://doi.org/10.1016/0013-7944(90)90178-J.
- Shi, Z. (2009), Crack Analysis in Structural Concrete: Theory and Applications, Butterworth-Heinemann.
- Tesser, L., Filippou, F.C., Talledo, D.A., Scotta, R. and Vitaliani, R. (2011), "Nonlinear analysis of R/C panels by a two parameter concrete damage model", ECCOMAS Thematic Conference: 3rd International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering: An IACM Special Interest Conference, Programme, Corfu, Greece, May.
- Vecchio, F.J. and Collins, M.P. (1986), "The modified compression-field theory for reinforced concrete elements subjected to shear", ACI J., 83(2), 219-231. https://doi.org/10.14359/10416.
- Wang, X., Su, Y. and Yan, L. (2014), "Experimental and numerical study on steel reinforced high-strength concrete short-leg shear walls", J. Constr. Steel Res., 101, 242-253. https://doi.org/10.1016/j.jcsr.2014.05.015.
- Wittmann, F.H., Roelfstra, P.E., Mihashi, H., Huang, Y.Y., Zhang, X.H. and Nomura, N. (1987), "Influence of age of loading, water-cement ratio and rate of loading on fracture energy of concrete", Mater. Struct., 20(2), 103-110. https://doi.org/10.1007/BF02472745.
- Wittmann, F.H., Rokugo, K., Bruhwiler, E., Mihashi, H. and Simonin, P. (1988), "Fracture energy and strain softening of concrete as determined by means of compact tension specimens", Mater. Struct, 21(1), 21-32. https://doi.org/10.1007/BF02472525.
- Wu, J.Y., Li, J. and Faria, R. (2006), "An energy release rate-based plastic-damage model for concrete", Int. J. Solid. Struct., 43(3-4), 583-612. https://doi.org/10.1016/j.ijsolstr.2005.05.038.
- Xu, C. and Sugiura, K. (2013), "FEM analysis on failure development of group studs shear connector under effects of concrete strength and stud dimension", Eng. Fail. Anal., 35, 343-354. https://doi.org/10.1016/j.engfailanal.2013.02.023.
- Xu, X., Liu, Y. and He, J. (2014), "Study on mechanical behavior of rubber-sleeved studs for steel and concrete composite structures", Constr. Build. Mater., 53, 533-546. https://doi.org/10.1016/j.conbuildmat.2013.12.011.
- Yan, J.B., Qian, X., Liew, J.R. and Zong, L. (2016), "Damage plasticity based numerical analysis on steelconcrete-steel sandwich shells used in the Arctic offshore structure", Eng. Struct., 117, 542-559. https://doi.org/10.1016/j.engstruct.2016.03.028.
- Yon, J.H. (1995), "Comparisons of concrete fracture models", KSCE J. Civil Environ. Eng. Res., 15(3), 583-583. https://doi.org/10.1061/(ASCE)0733-9399(1997) 123:3(196).