DOI QR코드

DOI QR Code

Determining a novel softening function for modeling the fracture of concrete

  • Hossein, Karimpour (Department of Civil Engineering, Shahid Rajaee Teacher Training University) ;
  • Moosa, Mazloom (Department of Civil Engineering, Shahid Rajaee Teacher Training University)
  • Received : 2021.08.11
  • Accepted : 2022.04.22
  • Published : 2022.12.25

Abstract

Softening function is the primary input for modeling the fracture of concrete when the cohesive crack approach is used. In this paper, based on the laboratory data on notched beams, an inverse algorithm is proposed that can accurately find the softening curve of the concrete. This algorithm uses non-linear finite element analysis and the damage-plasticity model. It is based on the kinematics of the beam at the late stages of loading. The softening curve, obtained from the corresponding algorithm, has been compared to other softening curves in the literature. It was observed that in determining the behavior of concrete, the usage of the presented curve made accurate results in predicting the peak loads and the load-deflection curves of the beams with different concrete mixtures. In fact, the proposed algorithm leads to softening curves that can be used for modeling the tensile cracking of concrete precisely. Moreover, the advantage of this algorithm is the low number of iterations for converging to an appropriate answer.

Keywords

References

  1. Abaqus. (2013), Abaqus 6.13 Analysis User's Guide, Dassault Systemes.
  2. Abbasnia, R. and Aslami, M. (2015), "Numerical simulation of concrete fracture under compression by explicit discrete element method", Int. J. Civil Eng., 13(3), 245-254. https://doi.org/10.22068/IJCE.13.3.245.
  3. Abna, A. and Mazloom, M. (2022), "Flexural properties of fiber reinforced concrete containing silica fume and nano-silica", Mater. Lett., 316, 132003. https://doi.org/10.1016/j.matlet.2022.132003.
  4. ACI 446.3R-97 (1997), Finite Element Analysis of Fracture in Concrete Structures, American Concrete Institute, Farmington Hills, USA.
  5. Afzali-Naniz, O. and Mazloom, M. (2019), "Fracture behavior of self-compacting semi-lightweight concrete containing nano-silica", Adv. Struct. Eng., 22(10), 2264-2277. https://doi.org/10.1177/1369433219837426.
  6. Alam, S.Y. and Loukili, A. (2020), "Effect of micro-macro crack interaction on softening behaviour of concrete fracture", Int. J. Solid. Struct., 182, 34-45. https://doi.org/10.1016/j.ijsolstr.2019.08.003.
  7. ASTM C 469/C 496M. (2004), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International.
  8. ASTM Standard C469. (2002), Standard Test Method for Static Modulus of Elasticity and Poisson' s Ratio of Concrete in Compression, ASTM International 04: 1-5.
  9. Barenblatt, G.I. (1962), "The mathematical theory of equilibrium cracks in brittle fracture", Adv. Appl. Mech., 7, 55-129. https://doi.org/10.1016/S0065-2156(08)70121-2.
  10. Bazant, Z.P. (2003), "Fracture mechanics of concrete: Concepts, models and determination of material properties", FractureMechanics of Concrete Structures, 25-44.
  11. Bazant, Z.P. (2001), "Concrete fracture models: testing and practice", Eng. Fract. Mech., 69(2), 165-205. https://doi.org/10.1016/S0013-7944(01)00084-4.
  12. Bazant, Z.P. and Phillip A.P. (1987), "Determination of fracture energy from size effect and brittleness number", ACI Mater. J., 84(6), 463-80. https://doi.org/10.14359/2526.
  13. Bazant, Z.P. and Planas, J. (2019), Fracture and Size Effect in Concrete and Other Quasibrittle Materials, Routledge, New York, NY, USA.
  14. Bhosale, A.B., Lakavath, C. and Prakash, S.S. (2020), "Multi-linear tensile stress-crack width relationships for hybrid fibre reinforced concrete using inverse analysis and digital image correlation", Eng. Struct., 225, 111275. https://doi.org/10.1016/j.engstruct.2020.111275.
  15. Broujerdian, V., Karimpour, H. and Alavikia, S. (2019), "Predicting the shear behavior of reinforced concrete beams using non-linear fracture mechanics", Int. J. Civil Eng., 17(5), 597-605. https://doi.org/10.1007/s40999-018-0336-6.
  16. Broujerdian, V., Sherafati, A. and Karimpour, H. (2018), "Effect of crack cohesive stresses on the loaddeformation response of reinforced concrete beams", Amirkabir J. Civil Eng., 50(1), 89-96. https://doi.org/10.22060/ceej.2017.11366.5012.
  17. Broujerdian, V. and Kazemi, M.T. (2016), "Non-linear finite element modeling of shear-critical reinforced concrete beams using a set of interactive constitutive laws", Int. J. Civil Eng., 14(8), 507-519. https://doi.org/10.1007/s40999-016-0024-3.
  18. Ceb-Fip, Model Code (1990), Design Code, Comite Euro International Du Beton, 51-59. https://doi.org/10.1016/0022-5096(60)90013-2
  19. Dugdale, D.S. (1960), "Yielding of steel sheets containing slits", J. Mech. Phys. Solid., 8(2), 100-104. https://doi.org/10.1016/0022-5096(60)90013-2.
  20. Fang, X.D., Jiang, B., Wei, H., Zhou, Y., Jiang, Y. and Lai, H. (2013), "Axial compressive test and study on steel tube confined high strength concrete shear wall", J. Build. Struct., 34(3), 100-109.
  21. Faria, R., Oliver, J. and Cervera, M. (1998), "A strain-based plastic viscous-damage model for massive concrete structures", Int. J. Solid. Struct., 35(14), 1533-58. https://doi.org/10.1016/S0020-7683(97)00119-4.
  22. Feng, D.C., Ren, X.D. and Li, J. (2018), "Softened damage-plasticity model for analysis of cracked reinforced concrete structures", J. Struct. Eng., 144(6), 04018044. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002015.
  23. Gao, D., Ding, C., Pang, Y. and Chen, G. (2021), "An inverse analysis method for multi-linear tensile stresscrack opening relationship of 3D/ 4D/ 5D steel fiber reinforced concrete", Constr. Build. Mater., 309, 125074. https://doi.org/10.1016/j.conbuildmat.2021.125074.
  24. Guinea, G.V., Planas, J. and Elices, M. (1994), "A general bilinear fit for the softening curve of concrete", Mater. Struct., 27(2), 99-105. https://doi.org/10.1007/BF02472827.
  25. Gustafsson, P.J. and Hillerborg, A. (1985), "Improvements in concrete design achieved through the application of fracture mechanics", NATO ASI Series, Series E: Appl. Sci., 94, 667-680. https://doi.org/10.1007/978-94-009-5121-1_24.
  26. Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6(6), 773-781. https://doi.org/10.1016/0008-8846(76)90007-7.
  27. Hsu, T.T. and Zhu, R.R. (2002), "Softened membrane model for reinforced concrete elements in shear", Struct. J., 99(4), 460-469. https://doi.org/10.14359/12115.
  28. Ju, J.W. (1989), "On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects", Int. J. Solid. Struct., 25(7), 803-833. https://doi.org/10.1016/0020-7683(89)90015-2.
  29. Karamloo, M. and Mazloom, M. (2018), "An efficient algorithm for scaling problem of notched beam specimens with various notch to depth ratios", Comput. Concrete, 22(1), 39-51. https://doi.org/10.12989/cac.2018.22.1.039.
  30. Karimpour, H. and Mazloom, M. (2022), "Pseudo-strain hardening and mechanical properties of green cementitious composites containing polypropylene fibers", Struct. Eng. Mech., 81(5), 575-589. https://doi.org/10.12989/sem.2022.81.5.575.
  31. Kumar, S. and Barai, S.V. (2011), Concrete Fracture Models and Applications, Springer Berlin, Heidelberg. https://doi.org/10.1061/(ASCE)0733-9399(1998)
  32. Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892).
  33. Li, V.C., Chan, C.M. and Leung, C.K. (1987), "Experimental determination of the tension-softening relations for cementitious composites", Cement Concrete Res., 17(3), 441-52. https://doi.org/10.1016/0008-8846(87)90008-1.
  34. Lu, X.Z., Ye, L.P. and Miao, Z.W. (2009), "Elasto-plastic analysis of buildings against earthquake", China Architecture and Building Press, Beijing.
  35. Mazloom, M., Karimpanah, H. and Karamloo, M. (2020), "Fracture behavior of monotype and hybrid fiber reinforced self-compacting concrete at different temperatures", Adv. Concrete Constr., 9(4), 375-386. https://doi.10.12989/acc.2020.9.4.375.
  36. Mazloom, M., Pourhaji, P. and Afzali Naniz, O. (2021), "Effects of halloysite nanotube, nano-silica and micro-silica on rheology, hardened properties and fracture energy of SCLC", Struct. Eng. Mech., 80(1), 91-101. https://doi.org/10.12989/sem.2021.80.1.091.
  37. Mazloom, M., Pourhaji, P., Shahveisi, M. and Jafari, S.H. (2019), "Studying the Park-Ang damage index of reinforced concrete structures based on equivalent sinusoidal waves", Struct. Eng. Mech., 72(1), 845-859. https://doi.org/10.12989/sem.2019.72.1.083.
  38. Mazloom, M. and Mirzamohammadi, S. (2019), "Thermal effects on the mechanical properties of cement mortars reinforced with aramid, glass, basalt and polypropylene fibers", Adv. Mater. Res., 8(2),137-154. https://doi.org/10.12989/amr.2019.8.2.137.
  39. Mazloom, M. and Mirzamohammadi, S. (2021a), "Fracture of fibre-reinforced cementitious composites after exposure to elevated temperatures", Mag. Concrete Res., 73(14), 701-713. https://doi.org/10.1680/jmacr.19.00401.
  40. Mazloom, M. and Mirzamohammadi, S. (2021b), "Computing the fracture energy of fiber-reinforced cementitious composites using response surface methodology", Adv. Comput. Des., 6(3), 225-239. https://doi.org/10.12989/acd.2021.6.3.225.
  41. Mehta, P.K. and Monteiro, P.J. (2017), Concrete Microstructure, Properties and Materials, McGraw-Hill Education.
  42. Van Mier, J.G.M. (1986), "Fracture of concrete under complex stress", Heron, 31(3), 1-90.
  43. Miller, R.A., Castro-Montero, A. and Shah, S.P. (1991), "Cohesive crack models for cement mortar examined using finite-element analysis and laser holographic measurements", J. Am. Ceram. Soc., 74(1), 130-138. https://doi.org/10.1111/j.1151-2916.1991.tb07308.x.
  44. Ostergaard, L., Lange, D. and Stang, H. (2004), "Early-age stress-crack opening relationships for high performance concrete", Cement Concrete Compos., 26(5), 563-72. https://doi.org/10.1016/S0958-9465(03)00074-X.
  45. Pan, Z., Wu, C., Liu, J., Wang, W. and Liu, J. (2015), "Study on mechanical properties of cost-effective polyvinyl alcohol engineered cementitious composites (PVA-ECC)", Constr. Build. Mater., 78, 397-404. https://doi.org/10.1016/j.conbuildmat.2014.12.071.
  46. Park, K., Paulino, G.H. and Roesler, J.R. (2008), "Determination of the kink point in the bilinear softening model for concrete", Eng. Fract. Mech., 75(13), 3806-3818. https://doi.org/10.1016/j.engfracmech.2008.02.002.
  47. Pavlovic, M.N. (1996), "Fracture mechanics of concrete: Applications of fracture mechanics to concrete, rock and other quasi-brittle materials", Eng. Struct., 18(11), 887-888. https://doi.org/10.1016/0141-0296(96)84816-4.
  48. Pavlovic, M., Markovic, Z., Veljkovic, M. and Budevac, D. (2013), "Bolted shear connectors vs. headed studs behaviour in push-out tests", J. Constr. Steel Res., 88, 134-149. https://doi.org/10.1016/j.jcsr.2013.05.003.
  49. Petersson, P.E. (1981), "Crack growth and development of fracture zones in plain concrete and similar materials", Report No. LUTVDG/TVBM--1006/1-174/(1981); Lund Institute of Technology, Division of Building Materials.
  50. Reddy, K.C. and Subramaniam, K.V. (2017), "Analysis for multi-linear stress-crack opening cohesive relationship: Application to macro-synthetic fiber reinforced concrete", Eng. Fract. Mech., 169, 128-145. https://doi.org/10.1016/j.engfracmech.2016.11.015.
  51. Reinhardt, H.W., Cornelissen, H.A. and Hordijk, D.A. (1986), "Tensile tests and failure analysis of concrete", J. Struct. Eng., 112(11), 2462-2477. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:11(2462).
  52. RILEM, D.R. (1985), "Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams", Mater. Struct., 18(106), 285-290. https://doi.org/10.1007/BF02472917
  53. RILEM, TC89. (1990), "89-FMT, fracture mechanics of concrete-test methods, size-effect method for determining fracture energy and process zone size of concrete", Mater. Struct., 23, 461-465. https://doi.org/10.1007/BF02472030
  54. Rots, J.G. and Blaauwendraad, J. (1989), "Crack models for concrete: Discrete or smeared? Fixed multidirectional or rotatin?", Heron, 34(1), 3-59.
  55. Salehi, H. and Mazloom, M. (2019a), "Effect of magnetic-field intensity on fracture behaviors of selfcompacting lightweight concrete", Mag. Concrete Res., 71(13), 665-679. https://doi.org/10.1680/jmacr.17.00418.
  56. Salehi, H. and Mazloom, M. (2019b), "An experimental investigation on fracture parameters and brittleness of self-compacting lightweight concrete containing magnetic field treated water", Arch. Civil Mech. Eng., 19(3), 803-819. https://doi.10.1016/j.acme.2018.10.008.
  57. Shah, S.P. (1990), "Experimental methods for determining fracture process zone and fracture parameters", Eng. Fract. Mech., 35(1-3), 3-14. https://doi.org/10.1016/0013-7944(90)90178-J.
  58. Shi, Z. (2009), Crack Analysis in Structural Concrete: Theory and Applications, Butterworth-Heinemann.
  59. Tesser, L., Filippou, F.C., Talledo, D.A., Scotta, R. and Vitaliani, R. (2011), "Nonlinear analysis of R/C panels by a two parameter concrete damage model", ECCOMAS Thematic Conference: 3rd International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering: An IACM Special Interest Conference, Programme, Corfu, Greece, May.
  60. Vecchio, F.J. and Collins, M.P. (1986), "The modified compression-field theory for reinforced concrete elements subjected to shear", ACI J., 83(2), 219-231. https://doi.org/10.14359/10416.
  61. Wang, X., Su, Y. and Yan, L. (2014), "Experimental and numerical study on steel reinforced high-strength concrete short-leg shear walls", J. Constr. Steel Res., 101, 242-253. https://doi.org/10.1016/j.jcsr.2014.05.015.
  62. Wittmann, F.H., Roelfstra, P.E., Mihashi, H., Huang, Y.Y., Zhang, X.H. and Nomura, N. (1987), "Influence of age of loading, water-cement ratio and rate of loading on fracture energy of concrete", Mater. Struct., 20(2), 103-110. https://doi.org/10.1007/BF02472745.
  63. Wittmann, F.H., Rokugo, K., Bruhwiler, E., Mihashi, H. and Simonin, P. (1988), "Fracture energy and strain softening of concrete as determined by means of compact tension specimens", Mater. Struct, 21(1), 21-32. https://doi.org/10.1007/BF02472525.
  64. Wu, J.Y., Li, J. and Faria, R. (2006), "An energy release rate-based plastic-damage model for concrete", Int. J. Solid. Struct., 43(3-4), 583-612. https://doi.org/10.1016/j.ijsolstr.2005.05.038.
  65. Xu, C. and Sugiura, K. (2013), "FEM analysis on failure development of group studs shear connector under effects of concrete strength and stud dimension", Eng. Fail. Anal., 35, 343-354. https://doi.org/10.1016/j.engfailanal.2013.02.023.
  66. Xu, X., Liu, Y. and He, J. (2014), "Study on mechanical behavior of rubber-sleeved studs for steel and concrete composite structures", Constr. Build. Mater., 53, 533-546. https://doi.org/10.1016/j.conbuildmat.2013.12.011.
  67. Yan, J.B., Qian, X., Liew, J.R. and Zong, L. (2016), "Damage plasticity based numerical analysis on steelconcrete-steel sandwich shells used in the Arctic offshore structure", Eng. Struct., 117, 542-559. https://doi.org/10.1016/j.engstruct.2016.03.028.
  68. Yon, J.H. (1995), "Comparisons of concrete fracture models", KSCE J. Civil Environ. Eng. Res., 15(3), 583-583. https://doi.org/10.1061/(ASCE)0733-9399(1997) 123:3(196).