참고문헌
- Abouelregal, A.E., Mohammad-Sedighi, H., Faghidian, S.A. and Shirazi, A.H. (2021), "Temperature-dependent physical characteristics of the rotating nonlocal nanobeams subject to a varying heat source and a dynamic load", Facta Univ. Ser.: Mech. Eng., 19(4), 633-656. https://doi.org/10.22190/FUME201222024A.
- Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
- Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421.
- Akbas, S.D. (2018), "Geometrically nonlinear analysis of functionally graded porous beams", Wind Struct., 27(1), 59-70. https://doi.org/10.12989/was.2018.27.1.059.
- Akbas, S.D. (2019), "Hygro-thermal nonlinear analysis of a functionally graded beam", J. Appl. Comput. Mech., 5(2), 477-485. https://doi.org/10.22055/jacm.2018.26819.1360
- Akbas, S.D., Fageehi, Y.A., Assie, A.E. and Eltaher, M.A. (2022), "Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load", Eng. Comput., 38, 365-377. https://doi.org/10.1007/s00366-020-01070-3.
- Al-Basyouni, K.S., Ghandourah, E., Mostafa, H.M. and Algarni, A. (2020), "Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body", Geomech. Eng., 21(1), 1-9. https://doi.org/10.12989/gae.2020.21.1.001.
- Asiri, S.A., Akbas, S.D. and Eltaher, M.A. (2020), "Damped dynamic responses of a layered functionally graded thick beam under a pulse load", Struct. Eng. Mech., 75(6), 713-722. https://doi.org/10.12989/sem.2020.75.6.713.
- Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
- Bharath, H.S., Waddar, S., Bekinal, S.I., Jeyaraj, P. and Doddamani, M. (2020), "Effect of axial compression on dynamic response of concurrently printed sandwich", Compos. Struct., 259, 113223. https://doi.org/10.1016/j.compstruct.2020.113223.
- Bouafia, K., Selim, M.M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A., ... & Tounsi, A. (2021), "Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model", Steel Compos. Struct., 41(4), 487-503. https://doi.org/10.12989/scs.2021.41.4.487.
- Bouazza, M. and Benseddiq, N. (2015), "Analytical modeling for the thermoelastic buckling behavior of functionally graded rectangular plates using hyperbolic shear deformation theory under thermal loadings", Multidisc. Model. Mater. Struct., 11(4), 558-578. https://doi.org/10.1108/MMMS-02-2015-0008.
- Bouhadra, A., Menasria, A. and Ali Rachedi, M. (2021), "Boundary conditions effect for buckling analysis of porous functionally graded nanobeam", Adv. Nano Res., 10(4), 313-325. https://doi.org/10.12989/anr.2021.10.4.313.
- Choudhary, J., Patle, B.K., Ramteke, P.M., Hirwani, C.K., Panda, S.K. and Katariya, P.V. (2022), "Static and dynamic deflection characteristics of cracked porous FG Panels", Int. J. Appl. Mech., 14(7), 2250076. https://doi.org/10.1142/S1758825122500764.
- Civalek, O. and Avcar, M. (2020), "Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method", Eng. Comput., 1-33. https://10.1007/s00366-020-01168-8.
- Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2020), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 259, https://doi.org/10.1016/j.compstruct.2020.113216.
- Daikh, A.A. and Zenkour, A.M. (2020), "Bending of functionally graded sandwich nanoplates resting on pasternak foundation under different boundary conditions", J. Appl. Comput. Mech., 6, 1245-1259. https://doi.org/10.22055/jacm.2020.33136.2166.
- Daouadji, T.H. and Hadji, L. (2015), "Analytical solution of nonlinear cylindrical bending for functionally graded plates", Geomech. Eng., 9(5), 631-644. https://doi.org/10.12989/gae.2015.9.5.631.
- Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019), "Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel", Earthq. Struct, 16(1), 55-67. https://doi.org/10.12989/eas.2019.16.1.055.
- Dehshahri, K., Nejad, MZ, Ziaee, S., Niknejad, A. and Hadi, A. (2020), "Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates", Adv. Nano Res., 8(2), 115-134. https://doi.org/10.12989/anR.2020.8.2.115.
- Fenjan, R.M., Faleh, N.M. and Ahmed, R.A. (2020), "Geometrical imperfection and thermal effects on nonlinear stability of microbeams made of graphene-reinforced nano-composites", Adv. Nano Res., 9(3), 147-156. https://doi.org/10.12989/anr.2020.9.3.147.
- Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.037.
- Ghumare, S.A. and Sayyad, A.S. (2020), "Analytical solutions for the hygro-thermo-mechanical bending of FG beams using a new fifth order shear and normal deformation theory", Appl. Comput. Mech., 14(1), 1. https://doi.org/10.24132/acm.2020.580.
- Giunta, G., Belouettar, S. and Carrera, E. (2010), "Analysis of FGM beams by means of classical and advanced theories", Mech. Adv. Mater. Struct., 17(8), 622-635. https://doi.org/10.1080/15376494.2010.518930.
- Giunta, G., Crisafulli, D., Belouettar, S. and Carrera, E. (2013), "Hierarchical theories for the free vibration analysis of functionally graded beams", Compos. Struct., 94, 68-74. https://doi.org/10.1016/j.compositesb.2012.11.017.
- Hadji, L., (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.
- Hirwani, C.K., Panda, S.K. and Mahapatra, T.R. (2018), "Thermomechanical deflection and stress responses of delaminated shallow shell structure using higher-order theories", Compos. Struct., 184, 135-145. https://doi.org/10.1016/j.compstruct.2017.09.071.
- Hirwani, C.K., Panda, S.K. and Mishra, P.K. (2021), "Influence of debonding on nonlinear deflection responses of curved composite panel structure under hygro-thermo-mechanical loading-macro-mechanical FE approach", Int. J. Nonlin. Mech., 128, 103636. https://doi.org/10.1016/j.ijnonlinmec.2020.103636.
- Hirwani, C.K., Tiwari, S., Mishra, P.K., Dewangan, H.C. and Panda, S.K. (2022), "Numerical hygrothermal frequency of pre-damage shallow shell panel: A nonlinear FE approach", Wave. Random Complex Media, 1-15. https://doi.org/10.1080/17455030.2022.2091181
- Kar, V.R. and Panda, S.K. (2016), "Nonlinear thermomechanical deformation behaviour of P-FGM shallow spherical shell panel", Chin. J. Aeronaut., 29(1), 173-183. https://doi.org/10.1016/j.cja.2015.12.007.
- Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2015), "Nonlinear flexural analysis of laminated composite flat panel under hygrothermo-mechanical loading", Steel Compos. Struct., 19(4), 1011-1033. http://doi.org/10.12989/scs.2015.19.04.1011.
- Karami, B. and Karami, S. (2019), "Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials", Adv. Nano Res., 7(1), 51-61. https://doi.org/10.12989/anr.2019.7.1.051.
- Ke, L.L, and Wang, Y.S. (2011), "Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory", Compos. Struct., 93(2), 342-350. https://doi.org/10.1016/j.compstruct.2010.09.008.
- Kiani, Y. (2019), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Therm. Stress., 43(1), 90-108. https://doi.org/10.1080/01495739.2019.1673687.
- Kolakowski, Z. (2016), "Some aspects of interactive dynamic stability of thin-walled trapezoidal FGM beam-columns under axial load", Thin Wall. Struct., 98, 431-442. https://doi.org/10.1016/j.tws.2015.10.020.
- Ma, L.S. and Lee, D.W. (2011), "A further discussion of nonlinear mechanical behavior for FGM beams under inplane thermal loading", Compos. Struct., 93, 831-842. https://doi.org/10.1016/j.compstruct.2010.07.011.
- Ma, L.S. and Lee, D.W. (2012), "Exact solutions for nonlinear static responses of a shear deformable FGM beam under an inplane thermal loading", Eur. J. Mech.-A/Solid., 31, 13-20. https://doi.org/10.1016/j.euromechsol.2011.06.016.
- Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
- Madenci, E. and Gulcu, S. (2020), "Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM", Struct. Eng. Mech., 75(5), 633-642. https://doi.org/10.12989/sem.2020.75.5.633.
- Mahapatra, T.R., Kar, V.R. and Panda, S.K. (2016), "Large amplitude vibration analysis of laminated composite spherical panels under hygrothermal environment", Int. J. Struct. Stab. Dyn., 16(3), 1450105 https://10.1142/s0219455414501053.
- Megharbel, A.E. (2016), "A theoretical analysis of functionally graded beam under thermal loading", World J. Eng. Technol., 4, 437-449. https://doi.org/10.4236/wjet.2016.43044.
- Mehar, K. and Panda, S.K. (2017), "Nonlinear static behavior of FG-CNT reinforced composite flat panel under thermomechanical load", J. Aerosp. Eng., 30(3), 04016100. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000706.
- Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181.
- Mehar, K., Panda, S.K. and Dewangan, H.C. (2020), "Multiscale finite element prediction of thermomechanical flexural strength of nanotube-reinforced hybrid smart composite panel bonded with SMA fibre", Struct., 28, 2300-2310. https://doi.org/10.1016/j.istruc.2020.10.049.
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eur. J. Mech.-A/Solid., 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005.
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018), "Thermoelastic deflection responses of CNT reinforced sandwich shell structure using finite element method", Scientia Iranica, 25(5), 2722-2737. https://doi.org/10.24200/sci.2017.4525.
- Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.
- Mirjavadi, SS, Forsat, M., Nia, AF, Badnava, S. and Hamouda, AMS (2020), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano Res., 8(2), 149-156. https://doi.org/10.12989/anr.2020.8.2.149.
- Nirmala, K., Upadhyay, P.C., Prucz, J. and Lyons, D. (2006), "Thermoelastic stresses in composite beams with functionally graded layer", J. Reinf. Plast. Compos., 25(12), 1241-1254. https://doi.org/10.1177/0731684406059787.
- Ouakad, H.M., Valipour, A., Zur, K.K., Sedighi, H.M. and Reddy, J.N. (2020), "On the nonlinear vibration and static deflection problems of actuated hybrid nanotubes based on the stress-driven nonlocal integral elasticity", Mech. Mater., 148, 103532. https://doi.org/10.1016/j.mechmat.2020.103532.
- Piovan, M.T. and Machado, S.P. (2011), "Thermoelastic dynamic stability of thin-walled beams with graded material properties", Thin Wall. Struct., 49(3), 437-447. https://doi.org/10.1016/j.tws.2010.11.002.
- Quoc-Hoa Pham, Tien-Dat Pham, Quoc V. Trinh, and Duc-Huynh Phan. (2020), "Geometrically nonlinear analysis of functionally graded shells using an edge-based smoothed MITC3 (ESMITC3) finite elements", Eng. Comput., 36(3), 1069-1082. https://doi.org/10.1007/s00366-019-00750-z.
- Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.
- Ramteke, P.M., Mehar, K., Sharma, N. and Panda, S.K. (2021), "Numerical prediction of deflection and stress responses of functionally graded structure for grading patterns (Power-law, sigmoid, and exponential) and variable porosity (even/uneven)", Scientia Iranica, 28(2), 811-829. https://doi.org/10.24200/sci.2020.55581.4290.
- Ramteke, P.M., Sharma, N., Choudhary, J., Hissaria, P. and Panda, S.K. (2021), "Multidirectional grading influence on static/dynamic deflection and stress responses of porous FG panel structure: A micromechanical approach", Eng. Comput., 38(4), 3077-3097. https://doi.org/10.1007/S00366-021-01449-W.
- Sankar, B.V. and Tzeng, J.T. (2002), "Thermal stresses in functionally graded beams", AIAA J., 40(6), 1-5. https://doi.org/10.2514/2.1775.
- Sayyad, A.S. and Ghugal, Y.M. (2019), "A unified five-degree-of freedom theory for the bending analysis of softcore and hardcore functionally graded sandwich beams and plates", J. Sandw. Struct. Mater., 109963621984098. https://doi.org/10.1177/1099636219840980.
- Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/sss.2020.26.3.361.
- Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.
- Thai, H.T. and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62(1), 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014.
- Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, 26(1), 53-62. https://doi.org/10.12989/cac.2020.26.1.053.
- Toudehdehghan, A., Rahman, M.M., Tarlochan, F. (2018), "Mechanical and thermal analysis of classical functionally graded coated beam", E3S Web Conf., 34, 01033. https://doi.org/10.1051/e3sconf/20183401033.
- Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
- Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2014), "Static behaviour of functionally graded sandwich beams using a quasi-3D theory", Compos. Part B: Eng., 68, 59-74. https://doi.org/10.1016/j.compositesb.2014.08.030.
- Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/cac.2020.26.2.107.
- Zamanzadeh, M., Rezazadeh, G., Jafarsadeghi-poornaki, I. and Shabani, R. (2013), "Static and dynamic stability modeling of a capacitive FGM micro-beam in presence of temperature changes", Appl. Math. Model., 37(10-11), 6964-6978. https://doi.org/10.1016/j.apm.2013.02.034.
- Zhou, H.M., Zhang, X.M. and Wang, Z.Y. (2019), "Thermal analysis of 2D FGM beam subjected to thermal loading using meshless weighted least-square method", Math. Prob. Eng., 2019, Article ID 2541707. https://doi.org/10.1155/2019/2541707.