DOI QR코드

DOI QR Code

Thickness stretching and nonlinear hygro-thermo-mechanical loading effects on bending behavior of FG beams

  • Faicel, Khadraoui (Laboratory of Materials and Reactive Systems, Department of Mechanical Engineering, University of Sidi Bel Abbes, Faculty of Technology) ;
  • Abderahmane, Menasria (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology) ;
  • Belgacem, Mamen (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology) ;
  • Abdelhakim, Bouhadra (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology) ;
  • Fouad, Bourada (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology) ;
  • Soumia, Benguediab (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology) ;
  • Kouider Halim, Benrahou (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology) ;
  • Mohamed, Benguediab (Laboratory of Materials and Reactive Systems, Department of Mechanical Engineering, University of Sidi Bel Abbes, Faculty of Technology) ;
  • Abdelouahed, Tounsi (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology)
  • 투고 : 2021.09.23
  • 심사 : 2022.12.06
  • 발행 : 2022.12.25

초록

This study attempts to investigate the impact of thickness stretching and nonlinear hygro-thermo-mechanical loading on the bending behavior of FG beams. Young's modulus, thermal expansion, and moisture concentration coefficients vary gradually and continuously according to a power-law distribution in terms of the volume fractions of the constituent materials. In addition, the interaction between the thermal, mechanical, and moisture loads is involved in the governing equilibrium equations. Using the present developed analytical model and Navier's solution technique, the numerical results of non-dimensional stresses and displacements are compared with those obtained by other 3D theories. Furthermore, the present analytical model is appropriate for investigating the static bending of FG beams exposed to intense hygro-thermo-mechanical loading used for special technical applications in aerospace, automobile, and civil engineering constructions.

키워드

참고문헌

  1. Abouelregal, A.E., Mohammad-Sedighi, H., Faghidian, S.A. and Shirazi, A.H. (2021), "Temperature-dependent physical characteristics of the rotating nonlocal nanobeams subject to a varying heat source and a dynamic load", Facta Univ. Ser.: Mech. Eng., 19(4), 633-656. https://doi.org/10.22190/FUME201222024A.
  2. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  3. Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421.
  4. Akbas, S.D. (2018), "Geometrically nonlinear analysis of functionally graded porous beams", Wind Struct., 27(1), 59-70. https://doi.org/10.12989/was.2018.27.1.059.
  5. Akbas, S.D. (2019), "Hygro-thermal nonlinear analysis of a functionally graded beam", J. Appl. Comput. Mech., 5(2), 477-485. https://doi.org/10.22055/jacm.2018.26819.1360
  6. Akbas, S.D., Fageehi, Y.A., Assie, A.E. and Eltaher, M.A. (2022), "Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load", Eng. Comput., 38, 365-377. https://doi.org/10.1007/s00366-020-01070-3.
  7. Al-Basyouni, K.S., Ghandourah, E., Mostafa, H.M. and Algarni, A. (2020), "Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body", Geomech. Eng., 21(1), 1-9. https://doi.org/10.12989/gae.2020.21.1.001.
  8. Asiri, S.A., Akbas, S.D. and Eltaher, M.A. (2020), "Damped dynamic responses of a layered functionally graded thick beam under a pulse load", Struct. Eng. Mech., 75(6), 713-722. https://doi.org/10.12989/sem.2020.75.6.713.
  9. Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.
  10. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  11. Bharath, H.S., Waddar, S., Bekinal, S.I., Jeyaraj, P. and Doddamani, M. (2020), "Effect of axial compression on dynamic response of concurrently printed sandwich", Compos. Struct., 259, 113223. https://doi.org/10.1016/j.compstruct.2020.113223.
  12. Bouafia, K., Selim, M.M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A., ... & Tounsi, A. (2021), "Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model", Steel Compos. Struct., 41(4), 487-503. https://doi.org/10.12989/scs.2021.41.4.487.
  13. Bouazza, M. and Benseddiq, N. (2015), "Analytical modeling for the thermoelastic buckling behavior of functionally graded rectangular plates using hyperbolic shear deformation theory under thermal loadings", Multidisc. Model. Mater. Struct., 11(4), 558-578. https://doi.org/10.1108/MMMS-02-2015-0008.
  14. Bouhadra, A., Menasria, A. and Ali Rachedi, M. (2021), "Boundary conditions effect for buckling analysis of porous functionally graded nanobeam", Adv. Nano Res., 10(4), 313-325. https://doi.org/10.12989/anr.2021.10.4.313.
  15. Choudhary, J., Patle, B.K., Ramteke, P.M., Hirwani, C.K., Panda, S.K. and Katariya, P.V. (2022), "Static and dynamic deflection characteristics of cracked porous FG Panels", Int. J. Appl. Mech., 14(7), 2250076. https://doi.org/10.1142/S1758825122500764.
  16. Civalek, O. and Avcar, M. (2020), "Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method", Eng. Comput., 1-33. https://10.1007/s00366-020-01168-8.
  17. Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2020), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 259, https://doi.org/10.1016/j.compstruct.2020.113216.
  18. Daikh, A.A. and Zenkour, A.M. (2020), "Bending of functionally graded sandwich nanoplates resting on pasternak foundation under different boundary conditions", J. Appl. Comput. Mech., 6, 1245-1259. https://doi.org/10.22055/jacm.2020.33136.2166.
  19. Daouadji, T.H. and Hadji, L. (2015), "Analytical solution of nonlinear cylindrical bending for functionally graded plates", Geomech. Eng., 9(5), 631-644. https://doi.org/10.12989/gae.2015.9.5.631.
  20. Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019), "Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel", Earthq. Struct, 16(1), 55-67. https://doi.org/10.12989/eas.2019.16.1.055.
  21. Dehshahri, K., Nejad, MZ, Ziaee, S., Niknejad, A. and Hadi, A. (2020), "Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates", Adv. Nano Res., 8(2), 115-134. https://doi.org/10.12989/anR.2020.8.2.115.
  22. Fenjan, R.M., Faleh, N.M. and Ahmed, R.A. (2020), "Geometrical imperfection and thermal effects on nonlinear stability of microbeams made of graphene-reinforced nano-composites", Adv. Nano Res., 9(3), 147-156. https://doi.org/10.12989/anr.2020.9.3.147.
  23. Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.037.
  24. Ghumare, S.A. and Sayyad, A.S. (2020), "Analytical solutions for the hygro-thermo-mechanical bending of FG beams using a new fifth order shear and normal deformation theory", Appl. Comput. Mech., 14(1), 1. https://doi.org/10.24132/acm.2020.580.
  25. Giunta, G., Belouettar, S. and Carrera, E. (2010), "Analysis of FGM beams by means of classical and advanced theories", Mech. Adv. Mater. Struct., 17(8), 622-635. https://doi.org/10.1080/15376494.2010.518930.
  26. Giunta, G., Crisafulli, D., Belouettar, S. and Carrera, E. (2013), "Hierarchical theories for the free vibration analysis of functionally graded beams", Compos. Struct., 94, 68-74. https://doi.org/10.1016/j.compositesb.2012.11.017.
  27. Hadji, L., (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.
  28. Hirwani, C.K., Panda, S.K. and Mahapatra, T.R. (2018), "Thermomechanical deflection and stress responses of delaminated shallow shell structure using higher-order theories", Compos. Struct., 184, 135-145. https://doi.org/10.1016/j.compstruct.2017.09.071.
  29. Hirwani, C.K., Panda, S.K. and Mishra, P.K. (2021), "Influence of debonding on nonlinear deflection responses of curved composite panel structure under hygro-thermo-mechanical loading-macro-mechanical FE approach", Int. J. Nonlin. Mech., 128, 103636. https://doi.org/10.1016/j.ijnonlinmec.2020.103636.
  30. Hirwani, C.K., Tiwari, S., Mishra, P.K., Dewangan, H.C. and Panda, S.K. (2022), "Numerical hygrothermal frequency of pre-damage shallow shell panel: A nonlinear FE approach", Wave. Random Complex Media, 1-15. https://doi.org/10.1080/17455030.2022.2091181
  31. Kar, V.R. and Panda, S.K. (2016), "Nonlinear thermomechanical deformation behaviour of P-FGM shallow spherical shell panel", Chin. J. Aeronaut., 29(1), 173-183. https://doi.org/10.1016/j.cja.2015.12.007.
  32. Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2015), "Nonlinear flexural analysis of laminated composite flat panel under hygrothermo-mechanical loading", Steel Compos. Struct., 19(4), 1011-1033. http://doi.org/10.12989/scs.2015.19.04.1011.
  33. Karami, B. and Karami, S. (2019), "Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials", Adv. Nano Res., 7(1), 51-61. https://doi.org/10.12989/anr.2019.7.1.051.
  34. Ke, L.L, and Wang, Y.S. (2011), "Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory", Compos. Struct., 93(2), 342-350. https://doi.org/10.1016/j.compstruct.2010.09.008.
  35. Kiani, Y. (2019), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Therm. Stress., 43(1), 90-108. https://doi.org/10.1080/01495739.2019.1673687.
  36. Kolakowski, Z. (2016), "Some aspects of interactive dynamic stability of thin-walled trapezoidal FGM beam-columns under axial load", Thin Wall. Struct., 98, 431-442. https://doi.org/10.1016/j.tws.2015.10.020.
  37. Ma, L.S. and Lee, D.W. (2011), "A further discussion of nonlinear mechanical behavior for FGM beams under inplane thermal loading", Compos. Struct., 93, 831-842. https://doi.org/10.1016/j.compstruct.2010.07.011.
  38. Ma, L.S. and Lee, D.W. (2012), "Exact solutions for nonlinear static responses of a shear deformable FGM beam under an inplane thermal loading", Eur. J. Mech.-A/Solid., 31, 13-20. https://doi.org/10.1016/j.euromechsol.2011.06.016.
  39. Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
  40. Madenci, E. and Gulcu, S. (2020), "Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM", Struct. Eng. Mech., 75(5), 633-642. https://doi.org/10.12989/sem.2020.75.5.633.
  41. Mahapatra, T.R., Kar, V.R. and Panda, S.K. (2016), "Large amplitude vibration analysis of laminated composite spherical panels under hygrothermal environment", Int. J. Struct. Stab. Dyn., 16(3), 1450105 https://10.1142/s0219455414501053.
  42. Megharbel, A.E. (2016), "A theoretical analysis of functionally graded beam under thermal loading", World J. Eng. Technol., 4, 437-449. https://doi.org/10.4236/wjet.2016.43044.
  43. Mehar, K. and Panda, S.K. (2017), "Nonlinear static behavior of FG-CNT reinforced composite flat panel under thermomechanical load", J. Aerosp. Eng., 30(3), 04016100. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000706.
  44. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181.
  45. Mehar, K., Panda, S.K. and Dewangan, H.C. (2020), "Multiscale finite element prediction of thermomechanical flexural strength of nanotube-reinforced hybrid smart composite panel bonded with SMA fibre", Struct., 28, 2300-2310. https://doi.org/10.1016/j.istruc.2020.10.049.
  46. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eur. J. Mech.-A/Solid., 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005.
  47. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018), "Thermoelastic deflection responses of CNT reinforced sandwich shell structure using finite element method", Scientia Iranica, 25(5), 2722-2737. https://doi.org/10.24200/sci.2017.4525.
  48. Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.
  49. Mirjavadi, SS, Forsat, M., Nia, AF, Badnava, S. and Hamouda, AMS (2020), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano Res., 8(2), 149-156. https://doi.org/10.12989/anr.2020.8.2.149.
  50. Nirmala, K., Upadhyay, P.C., Prucz, J. and Lyons, D. (2006), "Thermoelastic stresses in composite beams with functionally graded layer", J. Reinf. Plast. Compos., 25(12), 1241-1254. https://doi.org/10.1177/0731684406059787.
  51. Ouakad, H.M., Valipour, A., Zur, K.K., Sedighi, H.M. and Reddy, J.N. (2020), "On the nonlinear vibration and static deflection problems of actuated hybrid nanotubes based on the stress-driven nonlocal integral elasticity", Mech. Mater., 148, 103532. https://doi.org/10.1016/j.mechmat.2020.103532.
  52. Piovan, M.T. and Machado, S.P. (2011), "Thermoelastic dynamic stability of thin-walled beams with graded material properties", Thin Wall. Struct., 49(3), 437-447. https://doi.org/10.1016/j.tws.2010.11.002.
  53. Quoc-Hoa Pham, Tien-Dat Pham, Quoc V. Trinh, and Duc-Huynh Phan. (2020), "Geometrically nonlinear analysis of functionally graded shells using an edge-based smoothed MITC3 (ESMITC3) finite elements", Eng. Comput., 36(3), 1069-1082. https://doi.org/10.1007/s00366-019-00750-z.
  54. Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.
  55. Ramteke, P.M., Mehar, K., Sharma, N. and Panda, S.K. (2021), "Numerical prediction of deflection and stress responses of functionally graded structure for grading patterns (Power-law, sigmoid, and exponential) and variable porosity (even/uneven)", Scientia Iranica, 28(2), 811-829. https://doi.org/10.24200/sci.2020.55581.4290.
  56. Ramteke, P.M., Sharma, N., Choudhary, J., Hissaria, P. and Panda, S.K. (2021), "Multidirectional grading influence on static/dynamic deflection and stress responses of porous FG panel structure: A micromechanical approach", Eng. Comput., 38(4), 3077-3097. https://doi.org/10.1007/S00366-021-01449-W.
  57. Sankar, B.V. and Tzeng, J.T. (2002), "Thermal stresses in functionally graded beams", AIAA J., 40(6), 1-5. https://doi.org/10.2514/2.1775.
  58. Sayyad, A.S. and Ghugal, Y.M. (2019), "A unified five-degree-of freedom theory for the bending analysis of softcore and hardcore functionally graded sandwich beams and plates", J. Sandw. Struct. Mater., 109963621984098. https://doi.org/10.1177/1099636219840980.
  59. Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/sss.2020.26.3.361.
  60. Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.
  61. Thai, H.T. and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62(1), 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014.
  62. Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, 26(1), 53-62. https://doi.org/10.12989/cac.2020.26.1.053.
  63. Toudehdehghan, A., Rahman, M.M., Tarlochan, F. (2018), "Mechanical and thermal analysis of classical functionally graded coated beam", E3S Web Conf., 34, 01033. https://doi.org/10.1051/e3sconf/20183401033.
  64. Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
  65. Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2014), "Static behaviour of functionally graded sandwich beams using a quasi-3D theory", Compos. Part B: Eng., 68, 59-74. https://doi.org/10.1016/j.compositesb.2014.08.030.
  66. Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/cac.2020.26.2.107.
  67. Zamanzadeh, M., Rezazadeh, G., Jafarsadeghi-poornaki, I. and Shabani, R. (2013), "Static and dynamic stability modeling of a capacitive FGM micro-beam in presence of temperature changes", Appl. Math. Model., 37(10-11), 6964-6978. https://doi.org/10.1016/j.apm.2013.02.034.
  68. Zhou, H.M., Zhang, X.M. and Wang, Z.Y. (2019), "Thermal analysis of 2D FGM beam subjected to thermal loading using meshless weighted least-square method", Math. Prob. Eng., 2019, Article ID 2541707. https://doi.org/10.1155/2019/2541707.