DOI QR코드

DOI QR Code

Probabilistic evaluation of chloride ingress process in concrete structures considering environmental characteristics

  • Taisen, Zhao (Department of Civil Engineering, Tsinghua University) ;
  • Yi, Zhang (Department of Civil Engineering, Tsinghua University) ;
  • Kefei, Li (Department of Civil Engineering, Tsinghua University) ;
  • Junjie, Wang (Department of Civil Engineering, Tsinghua University)
  • Received : 2022.05.17
  • Accepted : 2022.12.14
  • Published : 2022.12.25

Abstract

One of the most prevalent causes of reinforced concrete (RC) structural deterioration is chloride-induced corrosion. This paper aims to provide a comprehensive insight into the environmental effect of RC's chloride ingress process. The first step is to investigate how relative humidity, temperature, and wind influence chloride ingress into concrete. The probability of initiation time of chloride-induced corrosion is predicted using a probabilistic model that considers these aspects. Parametric analysis is conducted on several factors impacting the corrosion process, including the depth of concrete cover, surface chloride concentration, relative humidity, and temperature to expose environmental features. According to the findings, environmental factors such as surface chloride concentration, relative humidity and temperature substantially impact on the time to corrosion initiation. The long- and short-distance impacts are also examined. The meteorological data from the National Meteorological Center of China are collected and used to analyze the environmental characteristics of the chloride ingress issue for structures along China's coastline. Finally, various recommendations are made for improving durability design against chloride attacks.

Keywords

Acknowledgement

The authors gratefully acknowledge the financial support from National Natural Science Foundation of China under project number of Grand No. 52111530234and52111540161. The support from Tsinghua University Initiative Scientific Research Program (20213080003) is also greatly appreciated.

References

  1. Abyaneh, S.D., Wong, H.S. and Buenfeld, N.R. (2013), "Modelling the diffusivity of mortar and concrete using a three-dimensional mesostructure with several aggregate shapes", Comput. Mater. Sci., 78(5), 63-73. http://dx.doi.org/10.1016/j.commatsci.2013.05.024.
  2. Akiyama, M., Frangopol, D.M. and Suzuki, M. (2012), "Integration of the effects of airborne chlorides into reliability-based durability design of reinforced concrete structures in a marine environment", Struct. Infrastr. Eng., 8(2), 125-134. https://doi.org/10.1080/15732470903363313.
  3. Alhozaimy, A., Hussain, R.R., Al-Zaid, R. and Al-Negheimish, A. (2012), "Coupled effect of ambient high relative humidity and varying temperature marine environment on corrosion of reinforced concrete", Constr. Build. Mater., 28(1), 670-679. https://doi.org/10.1016/j.conbuildmat.2011.10.008.
  4. Allampallewar, S.B. and Srividya, A. (2008), "Modeling cover cracking due to rebar corrosion in RC members", Struct. Eng. Mech, 30(6), 713-732. https://doi.org/10.12989/sem.2008.30.6.713.
  5. Angst, U., Elsener, B., Larsen, C.K. and Vennesland, O. (2009), "Critical chloride content in reinforced concrete-A review", Cement Concrete Res., 39(12), 1122-1138. https://doi.org/10.1016/j.cemconres.2009.08.006.
  6. Attari, A., McNally, C. and Richardson, M.G. (2016), "A probabilistic assessment of the influence of age factor on the service life of concretes with limestone cement/GGBS binders", Constr. Build. Mater., 111, 488-494. https://doi.org/10.1016/j.conbuildmat.2016.02.113.
  7. Bazant, Z.P. and Najjar, L.J. (1972), "Nonlinear water diffusion in nonsaturated concrete". Mater. Struct., 5(1), 3-20. https://doi.org/10.1007/BF02479073.
  8. Bastidas-Arteaga, E., Chateauneuf, A., Sanchez-Silva, M., Bressolette, P. and Schoefs, F. (2011), "A comprehensive probabilistic model of chloride ingress in unsaturated concrete", Eng. Struct., 33(3), 720-730. https://doi.org/10.1016/j.engstruct.2010.11.008.
  9. Cao, Y., Gehlen, C., Angst, U., Wang, L., Wang, Z. and Yao, Y. (2019), "Critical chloride content in reinforced concrete-An updated review considering Chinese experience", Cement Concrete Res., 117, 58-68. https://doi.org/10.1016/j.cemconres.2018.11.020.
  10. Chalee, W. and Jaturapitakkul, C. (2009a), "Effects of W/B ratios and fly ash finenesses on chloride diffusion coefficient of concrete in marine environment", Mater. Struct., 42(4), 505-514. https://doi.org/10.1617/s11527-008-9398-2.
  11. Chalee, W., Jaturapitakkul, C. and Chindaprasirt, P. (2009b), "Predicting the chloride penetration of fly ash concrete in seawater", Marine Struct., 22(3), 341-353. https://doi.org/10.1016/j.marstruc.2008.12.001.
  12. Chen, H. P. and Nepal, J. (2020), "Load bearing capacity reduction of concrete structures due to reinforcement corrosion", Struct. Eng. Mech, 75(4), 455-464. https://doi.org/10.12989/sem.2020.75.4.455.
  13. Chen, J.Y., Zhang, W.P., Tang, Z.J. and Huang, Q.H. (2020), "Experimental and numerical investigation of chloride-induced reinforcement corrosion and mortar cover cracking", Cement Concrete Compos., 111, 103620. https://doi.org/10.1016/j.cemconcomp.2020.103620.
  14. Collepardi, M., Marcialis, A. and Turriziani, R. (1972), "Penetration of chloride ions into cement pastes and concretes", J. Am. Ceramic Soc., 55(10), 534-535. https://doi.org/10.1111/j.1151-2916.1972.tb13424.x.
  15. Costa, A. and Appleton, J. (1999), "Chloride penetration into concrete in marine environment-Part I: Main parameters affecting chloride penetration", Mater. Struct., 32(218), 252-259. https://doi.org/10.1007/BF02479594.
  16. Crank, J. (1975), The Mathematics of Diffusion, Oxford University Press, Oxford, Mississippi, UK.
  17. Da, B., Yu, H., Ma, H., Zhang, Y., Zhu, H., Yu, Q., Ye, H. and Jing, X. (2016), "Investigation of durability of ordinary concrete structures in the South China Sea", J. Harbin Eng. Univ., 37(8), 1034-1040. https://doi.org/1040.10.11990/jheu.201505051. (in Chinese)
  18. de Medeiros, R.A., de Lima, M.G., de Brito, P.C. and de Medeiros, M.H.F. (2015), "Chloride penetration into concrete in an offshore platform-analysis of exposure conditions", Ocean Eng., 103, 78-87. https://doi.org/10.1016/j.oceaneng.2015.04.079.
  19. Delagrave, A., Bigas, J.P., Ollivier, J.P., Marchand, J. and Pigeon, M. (1997), "Influence of the interfacial zone on the chloride diffusivity of mortars", Adv. Cement Bas. Mater., 5(3-4), 86-92. https://doi.org/10.1016/S1065-7355(96)00008-9.
  20. Ehlen, M.A. and Kojundic, A.N. (2014), "Life-365TM v2.2", Concrete Int. 36(5), 374-387. https://doi.org/10.1007/10201129_52.
  21. Ferreira, R.M. (2010), "Optimization of RC structure performance in marine environment", Eng. Struct., 32(5), 1489-1494. https://doi.org/10.1016/j.engstruct.2010.02.011.
  22. Gao, X.J. and Wang, X.Y. (2017), "Impacts of global warming and sea level rise on service life of chloride-exposed concrete structures", Sustain., 9(3), 460. https://doi.org/10.3390/su9030460.
  23. Gjorv, O.E. (2011), "Durability of concrete structures", Arab. J. Sci. Eng., 36(2), 151-172. https://doi.org/10.3390/su9030460.
  24. CMA (2017), Observation data from China's surface weather stations, Beijing, China. (in Chinese)
  25. Griesel, E.J. and Alexander, M. G. (2001), "Effect of controlled environmental conditions on durability index parameters of portland cement concretes", Cement Concrete Aggreg., 23(1), 44-49. https://doi.org/10.1520/CCA10524J.
  26. Hassan, J.E., Bressolette, P., Chateauneuf, A. and Tawil, K.E. (2010), "Reliability-based assessment of the effect of climatic conditions on the corrosion of RC structures subject to chloride ingress", Eng. Struct., 32(10), 3279-3287. https://doi.org/10.1016/j.engstruct.2010.07.001.
  27. Henry, M. and Tojo, Y. (2019), "Impacts of global warming and variable airborne chloride exposure on concrete structures in Hokkaido", Proceedings of The 16th East Asian-Pacific Conference on Structural Engineering and Construction, Japan, December.
  28. Hosseini, S.A., Shabakhty, N. and Mahini, S.S. (2015), "Correlation between chloride-induced corrosion initiation and time to cover cracking in RC Structures", Struct. Eng. Mech., 56(2), 257-273. https://doi.org/10.12989/sem.2015.56.2.257.
  29. Hosseini, S.A., Shabakhty, N. and Khankandani, F.A. (2019), "Sensitivity analysis of flexural strength of RC beams influenced by reinforcement corrosion", Struct. Eng. Mech, 72(4), 479-489. https://doi.org/10.12989/sem.2019.72.4.479.
  30. IPCC (2001), Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK.
  31. Khan, M.U., Ahmad, S. and Al-Gahtani, H.J. (2017), "Chloride-induced corrosion of steel in concrete: an overview on chloride diffusion and prediction of corrosion initiation time", Int. J. Corros., 2017, Article ID 5819202. https://doi.org/10.1155/2017/2018527.
  32. Kong, J.S., Ababneh, A.N., Frangopol, D.M. and Xi, Y.P. (2002), "Reliability analysis of chloride penetration in saturated concrete", Prob. Eng. Mech., 17(3), 305-315. https://doi.org/10.1016/S0266-8920(02)00014-0.
  33. Kwon, S.J., Na, U.J., Park, S.S. and Jung, S.H. (2009), "Service life prediction of concrete wharves with early-aged crack: Probabilistic approach for chloride diffusion", Struct. Saf., 31(1), 75-83. https://doi.org/10.1016/j.strusafe.2008.03.004.
  34. Leng, Y., Lu, Z.H., Li, C.Q. and Zhao, Y.G. (2021), "Time-variant probabilistic assessment of corrosion initiation of marine concrete structures considering maximum phenomenon", Constr. Build. Mater., 272, 121967. https://doi.org/10.1016/j.conbuildmat.2020.121967.
  35. LNEC E465 (2007), Concrete-Methodology for Estimating the Concrete Performance Properties Allowing to Comply with the Design Working Life of the Reinforced or Pre-stressed Concrete Structures under Environmental Exposures XC and XS, LNEC-Laboratorio Nacional de Engenharia Civil, Lisboa, Portugal.
  36. Mangat, P.S. and Molloy, B.T. (1994), "Prediction of long-term chloride concentration in concrete", Mater. Struct., 27(170), 338-346. https://doi.org/10.1007/BF02473426.
  37. Marques, P.F., Costa, A. and Lanata, F. (2012), "Service life of RC structures: Chloride induced corrosion: Prescriptive versus performance-based methodologies", Mater. Struct., 45(1-2), 277-296. https://doi.org/10.1617/s11527-011-9765-2.
  38. Martin-Perez, B., Pantazopoulou, S.J. and Thomas, M.D.A. (2001), "Numerical solution of mass transport equations in concrete structures", Comput. Struct., 79(13), 1251-1264. https://doi.org/10.1016/S0045-7949(01)00018-9.
  39. Mejlbro, L. (1996), "The complete solution of Fick's second law of diffusion with time-dependent diffusion coefficient and surface concentration", Technical University of Denmark.
  40. Muthulingam, S. and Rao, B.N. (2014), "Non-uniform time-to-corrosion initiation in steel reinforced concrete under chloride environment", Corros. Sci., 82, 304-315. https://doi.org/10.1016/j.corsci.2014.01.023.
  41. Nogueira, C.G. and Leonel, E.D. (2013), "Probabilistic models applied to safety assessment of reinforced concrete structures subjected to chloride ingress", Eng. Fail. Anal., 31, 76-89. https://doi.org/10.1016/j.engfailanal.2013.01.023.
  42. Nokken, M., Boddy, A., Hooton, R.D. and Thomas, M.D.A. (2006), "Time dependent diffusion in concrete-three laboratory studies", Cement Concrete Res., 36(1), 200-207. https://doi.org/10.1016/j.cemconres.2004.03.030.
  43. Oh, B.H. and Jang, S.Y. (2007), "Effects of material and environmental parameters on chloride penetration profiles in concrete structures", Cement Concrete Res., 37(1), 47-53. https://doi.org/10.1016/j.cemconres.2006.09.005.
  44. Pack, S.W., Jung, M.S., Song, H.W., Kim, S.H. and Ann, K.Y. (2010), "Prediction of time dependent chloride transport in concrete structures exposed to a marine environment", Cement Concrete Res., 40(2), 302-312. https://doi.org/10.1016/j.cemconres.2009.09.023.
  45. Page, C.L., Short, N.R. and Tarras, A.E. (1981), "Diffusion of chloride ions in hardened cement pastes", Cement Concrete Res., 11(3), 395-406. https://doi.org/10.1016/0008-8846(81)90111-3.
  46. Pellizzer, G.P., Kroetz, H.M., Leonel, E.D. and Beck, A.T. (2020), "Time-dependent reliability of reinforced concrete considering chloride penetration via boundary element method", Lat. Am. J. Solid. Struct., 17(8), e316. https://doi.org/10.6084/m9.figshare.14325373.v1.
  47. Poulsen, E. and Mejlbro, L. (2005), Diffusion of Chloride in Concrete: Theory and Application, CRC Press: Boca Raton, FL, USA.
  48. Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (2002), Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, NY, USA.
  49. Saassouh, B. and Lounis, Z. (2012), "Probabilistic modeling of chloride-induced corrosion in concrete structures using first-and second-order reliability methods", Cement Concrete Compos., 34(9), 1082-1093. https://doi.org/10.1016/j.cemconcomp.2012.05.001.
  50. Saetta, A.V., Scotta, R.V. and Vitaliani, R.V. (1993), "Analysis of chloride diffusion into partially saturated concrete", ACI Materi. J., 90(5), 441-451. https://doi.org/10.14359/3874.
  51. Shirkhani, H., Zhang, J. and Lounis, Z. (2020), "Ensemble analysis of climate-change impacts on design-service life of reinforced concrete bridge decks across Canada", Nat. Hazard. Rev. 21(3), 04020030. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000397.
  52. Song, H.W., Shim, H.B., Petcherdchoo, A. and Park, S.K. (2009), "Service life prediction of repaired concrete structures under chloride environment using finite difference method", Cement Concrete Compos., 31(2), 120-127. https://doi.org/10.1016/j.cemconcomp.2008.11.002.
  53. Stewart, M.G. and Mullard, J.A. (2007), "Spatial time-dependent reliability analysis of corrosion damage and the timing of first repair for RC structures", Eng. Struct., 29(7), 1457-1464. https://doi.org/10.1016/j.engstruct.2006.09.004.
  54. Stewart, M.G., Wang, X. and Nguyen, M.N. (2011), "Climate change impact and risks of concrete infrastructure deterioration", Eng. Struct., 33(4), 1326-1337. https://doi.org/10.1016/j.engstruct.2011.01.0https://doi.org/10.
  55. Thomas, M.D.A. and Matthews, J.D. (2004), "Performance of pfa concrete in a marine environment-10-year results", Cement Concrete Compos., 26(1), 5-20. https://doi.org/10.1016/S0958-9465(02)00117-8.
  56. Tino Balestra, C.E., Reichert, T.A. and Savaris, G. (2019), "Contribution for durability studies based on chloride profiles analysis of real marine structures in different marine aggressive zones", Constr. Build. Mater., 206, 140-150. https://doi.org/10.1016/j.conbuildmat.2019.02.067.
  57. Titi, A. and Biondini, F. (2016), "On the accuracy of diffusion models for life-cycle assessment of concrete structures", Struct. Infrastr. Eng., 12(9), 1202-1215. https://doi.org/10.1080/15732479.2015.1099110.
  58. Val, D.V. and Trapper, P.A. (2008), "Probabilistic evaluation of initiation time of chloride-induced corrosion", Reliab. Eng. Syst. Saf., 93(3), 364-372. https://doi.org/10.1016/j.ress.2006.12.010.
  59. Von Rosenberg, D.U. (1969), Methods for The Numerical Solution of Partial Differential Equations, American Elsevier Publishing Company, NY, USA.
  60. Wang, C. (2021), "Explicitly assessing the durability of RC structures considering spatial variability and correlation", Infrastr., 6(11), 156. https://doi.org/10.3390/infrastructures6110156.
  61. Wang, H.L., Lu, C.H., Jin, W.L. and Bai, Y. (2011), "Effect of external loads on chloride transport in concrete", J. Mater. Civil Eng., 23(7), 1043-1049. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000265.
  62. Wu, L., Li, W. and Yu, X. (2017), "Time-dependent chloride penetration in concrete in marine environments", Constr. Build. Mater., 152, 406-413. https://doi.org/10.1016/j.conbuildmat.2017.07.016.
  63. Yang, C.C. and Su, J.K. (2002), "Approximate migration coefficient of interfacial transition zone and the effect of aggregate content on the migration coefficient of mortar", Cement Concrete Res., 32(10), 1559-1565. https://doi.org/10.1016/S0008-8846(02)00832-3.
  64. Yu, B., Ning, C.L. and Li, B. (2017), "Probabilistic durability assessment of concrete structures in marine environments: Reliability and sensitivity analysis", Chin. Ocean Eng., 31(1), 63-73. https://doi.org/10.1007/s13344-017-0008-3.
  65. Yu, B., Yang, L., Wu, M. and Li, B. (2014), "Practical model for predicting corrosion rate of steel reinforcement in concrete structures", Constr. Build. Mater., 54, 385-401. https://doi.org/10.1016/j.conbuildmat.2013.12.046.
  66. Yu, H., Sun, W. and Ma, H. (2009), "Diffusion model of chloride in concrete I-Homogeneous and inhomogeneous diffusion in infinite body", J. Nanjing Univ. Aeronaut. Astronaut., 41(2), 276-280. (in Chinese) https://doi.org/10.3969/j.issn.1005-2615.2009.02.027
  67. Yuan, C. and Niu, D. (2013), "Life prediction of the marine concrete structure based on the reliability theory", J. Wuhan Univ. Technol., 35(4), 73-79. https://doi.org/10.3963/j.issn.1671-4431.2013.04.016. (in Chinese)
  68. Zhang, G.Y., Zhu, Y.F., Lin, X.M., Tian, Y., Ye, H.L., Jin, X.Y., Jin, N.G., Yan, D.M., Xiao, F., Yao, K.W. and Chen, J. (2021), "Numerical simulation of electrochemical mechanism of steel rebar corrosion in concrete under natural climate with time-varying temperature and humidity", Constr. Build. Mater., 306, 124873. https://doi.org/10.1016/j.conbuildmat.2021.124873.
  69. Zhang, H.F., Zhang, W.P., Gu, X.L., Jin, X.Y. and Jin, N.G. (2016), "Chloride penetration in concrete under marine atmospheric environment-Analysis of the influencing factors", Struct. Infrastr. Eng., 12(11), 1428-1438. https://doi.org/10.1080/15732479.2015.1134588.
  70. Zhang, J. and Lounis, Z. (2006), "Sensitivity analysis of simplified diffusion-based corrosion initiation model of concrete structures exposed to chlorides", Cement Concrete Res., 36(7), 1312-1323. https://doi.org/10.1016/j.cemconres.2006.01.015.
  71. Zhang, Z., Niu, Q., Liu, X., Zhang, Y., Zhao, T. and Liu, M. (2021), "Durability life prediction of reinforced concrete structure corroded by chloride based on the gamma process", ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A-Civil Eng., 7(4), 04021061. https://doi.org/10.1061/AJRUA6.0001181.