DOI QR코드

DOI QR Code

Nonlinear vibration of SSMFG cylindrical shells with internal resonances resting on the nonlinear viscoelastic foundation

  • Kamran, Foroutan (Faculty of Mechanical and Mechatronics Engineering, Shahrood University of Technology) ;
  • Habib, Ahmadi (Faculty of Mechanical and Mechatronics Engineering, Shahrood University of Technology)
  • 투고 : 2020.09.23
  • 심사 : 2022.12.07
  • 발행 : 2022.12.25

초록

In this paper, the nonlinear vibration behavior of the spiral stiffened multilayer functionally graded (SSMFG) cylindrical shells exposed to the thermal environment and a uniformly distributed harmonic loading using a semi-analytical method is investigated. The cylindrical shell is surrounded by a nonlinear viscoelastic foundation consisting of a two-parameter Winkler-Pasternak foundation augmented by a Kelvin-Voigt viscoelastic model with a nonlinear cubic stiffness. The distribution of temperature and material constitutive of the stiffeners are continuously changed through the thickness direction. The cylindrical shell has three layers consisting of metal, FGM, and ceramic. The interior layer of the cylindrical shell is rich in metal, while the exterior layer is rich in ceramic, and the FG material is located between two layers. The nonlinear vibration problem utilizing the smeared stiffeners technique, the von Kármán equations, and the Galerkin method has been solved. The multiple scales method is utilized to examine the nonlinear vibration behavior of SSMFG cylindrical shells. The considered resonant case is 1:3:9 internal resonance and subharmonic resonance of order 1/3. The influences of different material and geometrical parameters on the vibration behavior of SSMFG cylindrical shells are examined. The results show that the angles of stiffeners, temperature, and elastic foundation parameters have a strong effect on the vibration behaviors of the SSMFG cylindrical shells.

키워드

참고문헌

  1. Abe, A., Kobayashi, Y. and Yamada, G. (2007), "Nonlinear dynamic behaviors of clamped laminated shallow shells with one-to-one internal resonance", J. Sound Vib., 304(3-5), 957-968. https://doi.org/10.1016/j.jsv.2007.03.009.
  2. Ahmadi, H. (2019), "Nonlinear primary resonance of imperfect spiral stiffened functionally graded cylindrical shells surrounded by damping and nonlinear elastic foundation", Eng. Comput., 35(4), 1491-1505. https://doi.org/10.1007/s00366-018-0679-2.
  3. Ahmadi, H. and Foroutan, K. (2019a), "Nonlinear primary resonance of spiral stiffened functionally graded cylindrical shells with damping force using the method of multiple scales", Thin Wall. Struct., 135, 33-44. https://doi.org/10.1016/j.tws.2018.10.028.
  4. Ahmadi, H. and Foroutan, K. (2019b), "Superharmonic and subharmonic resonances of spiral stiffened functionally graded cylindrical shells under harmonic excitation", Int. J. Struct. Stab. Dyn., 19(10), 1950114. https://doi.org/10.1142/S0219455419501141.
  5. Ahmadi, H. and Foroutan, K. (2019c), "Combination resonance analysis of FG porous cylindrical shell under two-term excitation", Steel Compos. Struct., 32(2), 253-264. http://dx.doi.org/10.12989/scs.2019.32.2.253.
  6. Ahmadi, H. and Foroutan, K. (2019d), "Nonlinear vibration of stiffened multilayer FG cylindrical shells with spiral stiffeners rested on damping and elastic foundation in thermal environment", Thin Wall. Struct., 145, 106388. https://doi.org/10.1016/j.tws.2019.106388.
  7. Alijani, F., Amabili, M. and Bakhtiari-Nejad, F. (2011), "On the accuracy of the multiple scales method for non-linear vibrations of doubly curved shallow shells", Int. J. Nonlin. Mech., 46(1), 170-179. https://doi.org/10.1016/j.ijnonlinmec.2010.08.006.
  8. Ansari, R. and Gholami, R. (2016), "Nonlinear primary resonance of third-order shear deformable functionally graded nanocomposite rectangular plates reinforced by carbon nanotubes", Compos. Struct., 154, 707-723. https://doi.org/10.1016/j.compstruct.2016.07.023.
  9. Avey, M. and Yusufoglu, E. (2020), "On the solution of large-amplitude vibration of carbon nanotube-based double-curved shallow shells", Math. Meth. Appl. Sci., 1-13. https://doi.org/10.1002/mma.6820.
  10. Bich, D.H., Van Dung, D., Nam, V.H. and Phuong, N.T. (2013), "Nonlinear static and dynamic buckling analysis of imperfect eccentrically stiffened functionally graded circular cylindrical thin shells under axial compression", Int. J. Mech. Sci., 74, 190-200. https://doi.org/10.1016/j.ijmecsci.2013.06.002.
  11. Brush, D.O. and Almroth, B.O. (1975), Buckling of Bars, Plates, and Shells, McGraw-Hill, New York.
  12. Du, C. and Li, Y. (2013), "Nonlinear resonance behavior of functionally graded cylindrical shells in thermal environments", Compos. Struct., 102, 164-174. https://doi.org/10.1016/j.compstruct.2013.02.028.
  13. Duc, N.D. and Thang, P.T. (2015), "Nonlinear dynamic response and vibration of shear deformable imperfect eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations", Aerosp. Sci. Technol., 40, 115-127. https://doi.org/10.1016/j.ast.2014.11.005.
  14. Ehyaei, J., Farazmandnia, N. and Jafari, A. (2017), "Rotating effects on hygro-mechanical vibration analysis of FG beams based on Euler-Bernoulli beam theory", Struct. Eng. Mech., 63(4), 471-480. http://dx.doi.org/10.12989/sem.2017.63.4.471.
  15. Foroutan, K. and Ahmadi, H. (2020a), "Combination resonances of imperfect SSFG cylindrical shells rested on viscoelastic foundations", Struct. Eng. Mech., 75(1), 87-100. http://dx.doi.org/10.12989/sem.2020.75.1.087.
  16. Foroutan, K. and Ahmadi, H. (2020b), "Nonlinear free vibration analysis of SSMFG cylindrical shells resting on nonlinear viscoelastic foundation in thermal environment", Appl. Math. Model., 85, 294-317. https://doi.org/10.1016/j.apm.2020.04.017.
  17. Foroutan, K., Ahmadi, H. and Shariyat, M. (2020). "Asymmetric large deformation superharmonic and subharmonic resonances of spiral stiffened imperfect FG cylindrical shells resting on generalized nonlinear viscoelastic foundations", Int. J. Appl. Mech., 12(5), 2050052. https://doi.org/10.1142/S1758825120500520.
  18. Foroutan, K., Shaterzadeh, A. and Ahmadi, H. (2018), "Nonlinear dynamic analysis of spiral stiffened functionally graded cylindrical shells with damping and nonlinear elastic foundation under axial compression", Struct. Eng. Mech., 66(3), 295-303. http://doi.org/10.12989/sem.2018.66.3.295.
  19. Gao, K., Gao, W., Wu, B., Wu, D. and Song, C. (2018), "Nonlinear primary resonance of functionally graded porous cylindrical shells using the method of multiple scales", Thin Wall. Struct., 125, 281-293. https://doi.org/10.1016/j.tws.2017.12.039.
  20. Haciyev, V.C., Sofiyev, A.H. and Kuruoglu, N. (2019), "On the free vibration of orthotropic and inhomogeneous with spatial coordinates plates resting on the inhomogeneous viscoelastic foundation", Mech. Adv. Mater. Struct., 26(10), 886-897. https://doi.org/10.1080/15376494.2018.1430271.
  21. Hadji, L., Meziane, M., Abdelhak, Z., Daouadji, T.H. and Bedia, E.A. (2016), "Static and dynamic behavior of FGM plate using a new first shear deformation plate theory", Struct. Eng. Mech., 57(1), 127-140. http://doi.org/10.12989/sem.2016.57.1.127.
  22. Hao, Y.X., Chen, L.H., Zhang, W. and Lei, J.G. (2008), "Nonlinear oscillations, bifurcations and chaos of functionally graded materials plate", J. Sound Vib., 312(4-5), 862-892. https://doi.org/10.1016/j.jsv.2007.11.033.
  23. Li, F.M. and Yao, G. (2013), "1/3 subharmonic resonance of a nonlinear composite laminated cylindrical shell in subsonic air flow", Compos. Struct., 100, 249-256. https://doi.org/10.1016/j.compstruct.2012.12.035.
  24. Li, X., Du, C. and Li, Y. (2018), "Parametric resonance of a FG cylindrical thin shell with periodic rotating angular speeds in thermal environment", Appl. Math. Model., 59, 393-409. https://doi.org/10.1016/j.apm.2018.01.048.
  25. Liu, T., Zhang, W., Mao, J. and Zheng, Y. (2019), "Nonlinear breathing vibrations of eccentric rotating composite laminated circular cylindrical shell subjected to temperature, rotating speed and external excitations", Mech. Syst. Signal Pr., 127, 463-498. https://doi.org/10.1016/j.ymssp.2019.02.061.
  26. Mahmoudkhani, S., Navazi, H. and Haddadpour, H. (2011), "An analytical study of the non-linear vibrations of cylindrical shells", Int. J. Nonlin. Mech., 46(10), 1361-1372. https://doi.org/10.1016/j.ijnonlinmec.2011.07.012.
  27. Nam, V.H., Phuong, N.T. and Trung, N.T. (2019b), "Nonlinear buckling and postbuckling of sandwich FGM cylindrical shells reinforced by spiral stiffeners under torsion loads in thermal environment", Acta Mech., 230(9), 3183-3204. https://doi.org/10.1007/s00707-019-02452-5.
  28. Nam, V.H., Phuong, N.T., Doan, C.V. and Trung, N.T. (2019a), "Nonlinear thermo-mechanical stability analysis of eccentrically spiral stiffened sandwich functionally graded cylindrical shells subjected to external pressure", Int. J. Appl. Mech., 11(05), 1950045. https://doi.org/10.1142/S1758825119500455.
  29. Paliwal, D., Pandey, R.K. and Nath, T. (1996), "Free vibrations of circular cylindrical shell on Winkler and Pasternak foundations", Int. J. Press. Ves. Pip., 69(1), 79-89. https://doi.org/10.1016/0308-0161(95)00010-0.
  30. Permoon, M., Haddadpour, H. and Javadi, M. (2018), "Nonlinear vibration of fractional viscoelastic plate: Primary, subharmonic, and superharmonic response", Int. J. Nonlin. Mech., 99, 154-164. https://doi.org/10.1016/j.ijnonlinmec.2017.11.010.
  31. Phuong, N.T., Nam, V.H., Trung, N.T., Duc, V.M. and Phong, P.V. (2019b), "Nonlinear stability of sandwich functionally graded cylindrical shells with stiffeners under axial compression in thermal environment", Int. J. Struct. Stab. Dyn., 19(07), 1950073. https://doi.org/10.1142/S0219455419500731.
  32. Phuong, N.T., Thanh Luan, D., Nam, V.H. and Hieu, P.T. (2019a), "Nonlinear approach on torsional buckling and postbuckling of functionally graded cylindrical shells reinforced by orthogonal and spiral stiffeners in thermal environment", Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 233(6), 2091-2106. https://doi.org/10.1177/0954406218780523.
  33. Rodrigues, L., Goncalves, P.B. and Silva, F.M. (2017), "Internal resonances in a transversally excited imperfect circular cylindrical shell", Procedia Eng., 199, 838-843. https://doi.org/10.1016/j.proeng.2017.09.010.
  34. Shaterzadeh, A. and Foroutan, K. (2016), "Post-buckling of cylindrical shells with spiral stiffeners under elastic foundation", Struct. Eng. Mech., 60(4), 615-631. http://doi.org/10.12989/sem.2016.60.4.615.
  35. Sheng, G. and Wang, X. (2018a), "Nonlinear vibrations of FG cylindrical shells subjected to parametric and external excitations", Compos. Struct., 191, 78-88. https://doi.org/10.1016/j.compstruct.2018.02.018.
  36. Sheng, G. and Wang, X. (2018b), "The dynamic stability and nonlinear vibration analysis of stiffened functionally graded cylindrical shells", Appl. Math. Model., 56, 389-403. https://doi.org/10.1016/j.apm.2017.12.021.
  37. Sofiyev, A. (2016), "Large amplitude vibration of FGM orthotropic cylindrical shells interacting with the nonlinear Winkler elastic foundation", Compos. Part B-Eng., 98, 141-150. https://doi.org/10.1016/j.compositesb.2016.05.018.
  38. Sofiyev, A., Avcar, M., Ozyigit, P. and Adigozel, S. (2009), "The Free Vibration of non-homogeneous truncated conical shells on a winkler foundation", Int. J. Eng. Appl. Sci., 1(1), 34-41.
  39. Sofiyev, A., Hui, D., Haciyev, V., Erdem, H., Yuan, G., Schnack, E. and Guldal, V. (2017), "The nonlinear vibration of orthotropic functionally graded cylindrical shells surrounded by an elastic foundation within first order shear deformation theory", Compos. Part B-Eng., 116, 170-185. https://doi.org/10.1016/j.compositesb.2017.02.006.
  40. Sofiyev, A.H. (2019), "Review of research on the vibration and buckling of the FGM conical shells", Compos. Struct., 211, 301-317. https://doi.org/10.1016/j.compstruct.2018.12.047.
  41. Sofiyev, A.H. and Kuruoglu, N. (2017), "Combined effects of transverse shear stresses and nonlinear elastic foundations on the nonlinear dynamic response of heterogeneous orthotropic cylindrical shells", Compos. Struct., 166, 153-162. https://doi.org/10.1016/j.compstruct.2017.01.058.
  42. Song, Z.G. and Li, F.M. (2013), "Aerothermoelastic analysis and active flutter control of supersonic composite laminated cylindrical shells", Compos. Struct., 106, 653-660. https://doi.org/10.1016/j.compstruct.2013.07.029.
  43. Van Dung, D. and Nam, V.H. (2014), "Nonlinear dynamic analysis of eccentrically stiffened functionally graded circular cylindrical thin shells under external pressure and surrounded by an elastic medium", Eur. J. Mech. A-Solid., 46, 42-53. https://doi.org/10.1016/j.euromechsol.2014.02.008.
  44. Volmir, A.S. (1972), Non-linear Dynamics of Plates and Shells, AS Science Edition M, USSR.
  45. Wang, Y., Ye, C. and Zu, J. (2018), "Identifying the temperature effect on the vibrations of functionally graded cylindrical shells with porosities", Appl. Math. Mech., 39(11), 1587-1604. https://doi.org/10.1007/s10483-018-2388-6.
  46. Wang, Y.Q. (2018), "Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state", Acta Astronaut., 143, 263-271. https://doi.org/10.1016/j.actaastro.2017.12.004.
  47. Wang, Y.Q. and Yang, Z. (2017), "Nonlinear vibrations of moving functionally graded plates containing porosities and contacting with liquid: Internal resonance", Nonlin. Dyn., 90(2), 1461-1480. https://doi.org/10.1007/s11071-017-3739-z.
  48. Wang, Y.Q. and Zu, J.W. (2017a), "Porosity-dependent nonlinear forced vibration analysis of functionally graded piezoelectric smart material plates", Smart Mater. Struct., 26(10), 105014. https://doi.org/10.1088/1361-665X/aa8429.
  49. Wang, Y.Q. and Zu, J.W. (2017b), "Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment", Aerosp. Sci. Technol., 69, 550-562. https://doi.org/10.1016/j.ast.2017.07.023.
  50. Wang, Y.Q., Liang, L. and Guo, X.H. (2013), "Internal resonance of axially moving laminated circular cylindrical shells", J. Sound Vib., 332(24), 6434-6450. https://doi.org/10.1016/j.jsv.2013.07.007.
  51. Wang, Y.Q., Wan, Y.H. and Zu, J.W. (2019c), "Nonlinear dynamic characteristics of functionally graded sandwich thin nanoshells conveying fluid incorporating surface stress influence", Thin Wall. Struct., 135, 537-547. https://doi.org/10.1016/j.tws.2018.11.023.
  52. Wang, Y.Q., Ye, C. and Zhu, J. (2020), "Chebyshev collocation technique for vibration analysis of sandwich cylindrical shells with metal foam core", ZAMM-J. Appl. Math. Mech., 100(5), e201900199. https://doi.org/10.1002/zamm.201900199.
  53. Wang, Y.Q., Ye, C. and Zu, J.W. (2019a), "Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets", Aerosp. Sci. Technol., 85, 359-370. https://doi.org/10.1016/j.ast.2018.12.022.
  54. Wang, Y.Q., Ye, C. and Zu, J.W. (2019b), "Vibration analysis of circular cylindrical shells made of metal foams under various boundary conditions", Int. J. Mech. Mater. Des., 15(2), 333-344. https://doi.org/10.1007/s10999-018-9415-8.
  55. Yang, S., Zhang, W. and Mao, J. (2019), "Nonlinear vibrations of carbon fiber reinforced polymer laminated cylindrical shell under non-normal boundary conditions with 1: 2 internal resonance", Eur. J. Mech. A-Solid., 74, 317-336. https://doi.org/10.1016/j.euromechsol.2018.11.014.
  56. Zhang, W., Hao, Y., Guo, X. and Chen, L. (2012), "Complicated nonlinear responses of a simply supported FGM rectangular plate under combined parametric and external excitations", Meccanica, 47(4), 985-1014. https://doi.org/10.1007/s11012-011-9491-4.
  57. Zhang, W., Hao, Y.X. and Yang, J. (2012), "Nonlinear dynamic of FGM circular cylindrical shell with clamped-clamped edges", Compos. Struct., 94(3), 1075-1086. https://doi.org/10.1016/j.compstruct.2011.11.004.
  58. Zhang, W., Liu, T., Xi, A. and Wang, Y. (2018), "Resonant responses and chaotic dynamics of composite laminated circular cylindrical shell with membranes", J. Sound Vib., 423, 65-99. https://doi.org/10.1016/j.jsv.2018.02.049.
  59. Zhang, W., Yang, J. and Hao, Y. (2010), "Chaotic vibrations of an orthotropic FGM rectangular plate based on third-order shear deformation theory", Nonlin. Dyn., 59(4), 619-660. https://doi.org/10.1007/s11071-009-9568-y.
  60. Zhang, X., Liu, G. and Lam, K. (2001), "Vibration analysis of thin cylindrical shells using wave propagation approach", J. Sound Vib., 239(3), 397-403. https://doi.org/10.1006/jsvi.2000.3139.
  61. Zhang, Y., Zhang, W. and Yao, Z. (2018), "Analysis on nonlinear vibrations near internal resonances of a composite laminated piezoelectric rectangular plate", Eng. Struct., 173, 89-106. https://doi.org/10.1016/j.engstruct.2018.04.100.