References
- Ali, H.T., Akrami, R., Fotouhi, S., Pashmforoush, F., Fragassa, C. and Fotouhi, M. (2020), "Fffect of the stacking sequence on the impact response of carbon-glass/epoxy hybrid composites", Facta Universitatis, Ser.: Mech. Eng., 18(1), 69-77. https://doi.org/10.22190/FUME191119010A.
- Allam, O., Draiche, K., Bousahla, A.A, Bourada, F., Tounsi, A., Benrahou, K.H., Mahmoud, S.R., Adda Bedia, E.A. and Tounsi, A. (2020), "A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells", Comput. Concrete, 26(2), 185-201. https://doi.org/10.12989/cac.2020.26.2.185.
- Belarbi, M.O., Daikh, A.A., Garg, A., Hirane, H., Houari, M.S.A., Civalek, O. and Chalak, H.D. (2023), "Bending and free vibration analysis of porous functionally graded sandwich plate with various porosity distributions using an extended layerwise theory", Arch. Civil Mech. Eng., 23(1), 1-24. https://doi.org/10.1007/s43452-022-00551-0.
- Belarbi, M.O., Garg, A., Houari, M.S.A., Hirane, H., Tounsi, A. and Chalak, H.D. (2021), "A three-unknown refined shear beam element model for buckling analysis of functionally graded curved sandwich beams", Eng. Comput., 38(Suppl 5), 4273-4300. https://doi.org/10.1007/s00366-021-01452-1.
- Bert, C.W. (1967), "Structural theory for laminated anisotropic elastic shells", J. Compos. Mater., 1(4), 414-423. https://doi.org/10.1177/002199836700100409.
- Bert, C.W. and Birman, V. (1988), "Parametric instability of thick orthotropic circular cylindrical shells", Acta Mechanica, 71, 61-76. https://doi.org/10.1007/BF01173938.
- Bert, C.W., Baker, J.L. and Egle, D.M. (1969), "Free vibrations of multilayer anisotropic cylindrical shells", J. Compos. Mater., 3(3), 480-499. https://doi.org/10.1177/002199836900300312.
- Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60(5), 195-216. https://doi.org/10.1115/1.2777164.
- Carrera, E. (2003), "Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarking", Arch. Comput. Meth. Eng., 10, 215-296. https://doi.org/10.1007/BF02736224.
- Chaudhuri, P.B., Mitra, A. and Sahoo, S. (2019), "Mode frequency analysis of antisymmetric angle-ply laminated composite stiffened hypar shell with cutout", Mech. Mech. Eng., 23(1), 162-171. http://doi.org/10.2478/mme-2019-0022.
- Daikh, A. and Zenkour, A. (2020), "Bending of functionally graded sandwich nanoplates resting on Pasternak foundation under different boundary conditions", J. Appl. Comput. Mech., 6, 1245-1259. https://doi.org/10.22055/jacm.2020.33136.2166.
- Doyle, J.F. (2001), Thin Plates and Shells, in Nonlinear Analysis of Thin-Walled Structures, Springer, New York, NY.
- Duc, N.D. and Quan, T.Q. (2014), "Transient responses of functionally graded double curved shallow shells with temperature-dependent material properties in thermal environment", Eur. J. Mech. A Solid., 47, 101-123. https://doi.org/10.1016/j.euromechsol.2014.03.002.
- Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C. and Polit, O. (2011), "Analysis of laminated shells by a sinusoidal shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations", Compos. Part B: Eng., 42(5), 127612-84. https://doi.org/10.1016/j.compositesb.2011.01.031.
- Ganapathi, M., Patel, B.P. and Pawargi, D.S. (2002), "Dynamic analysis of laminated cross-ply composite non-circular thick cylindrical shells using higher-order theory", Int. J. Solid. Struct., 39(24), 5945-5962. https://doi.org/10.1016/S0020-7683(02)00495-X.
- Garg, A. Chalak, H.D., Belarbi, M.O. and Zenkour, A.M. (2021a), "Hygro-thermo-mechanical based bending analysis of symmetric and unsymmetric power-law, exponential and sigmoidal FG sandwich beams", Mech. Adv. Mater. Struct., 29(25), 4523-4545. https://doi.org/10.1080/15376494.2021.1931993.
- Garg, A., Belarbi, M.O., Chalak, H.D. and Chakrabarti, A. (2020a), "A review of the analysis of sandwich FGM structures", Compos. Struct., 258, 113427. https://doi.org/10.1016/j. compstruct.2020.113427.
- Garg, A., Belarbi, M.O., Tounsi, A., Li, L., Singh, A. and Mukhopadhyay, T. (2022b), "Predicting elemental stiffness matrix of FG nanoplates using Gaussian Process Regression based surrogate model in framework of layerwise model", Eng. Anal. Bound. Elem., 143, 779-795. https://doi.org/10.1016/j.enganabound.2022.08.001.
- Garg, A., Belarbi, MO., Li, L. and Tounsi, A. (2022c), "Bending analysis of power-law sandwich FGM beams under thermal conditions", Adv. Aircraft Spacecraft. Sci., 9(3), 243-261. https://doi.org/10.12989/aas.2022.9.3.243.
- Garg, A., Chalak, H.D. and Chakrabarti, A. (2020b), "Comparative study on the bending of sandwich FGM beams made up of different material variation laws using refined layerwise theory", Mech. Mater., 151, 103634. https://doi.org/10.1016/j.mechmat.2020.103634.
- Garg, A., Chalak, H.D., Belarbi, M.O., Chakrabarti, A. and Houari, M.S.A. (2021b), "Finite element-based free vibration analysis of power-law, exponential and sigmoidal functionally graded sandwich beams", J. Inst. Eng. India Ser. C, 102, 1167-1201. https://doi.org/10.1007/s40032-021-00740-5.
- Garg, A., Chalak, H.D., Zenkour, A.M., Belarbi, M.O. and Houari, M.S.A. (2022a), "A review of available theories and methodologies for the analysis of nano isotropic, nano functionally graded, and CNT reinforced nanocomposite structures", Arch Comput Meth. Eng., 29, 2237-2270. https://doi.org/10.1007/s11831-021-09652-0.
- Ghodrati, B., Yaghootian, A., Ghanbar Zadeh, A. and Mohammad-Sedighi, H. (2018), "Lamb wave extraction of dispersion curves in micro/nano-plates using couple stress theories", Wave. Random Complex Media, 28(1), 15-34. https://doi.org/10.1080/17455030.2017.1308582.
- Gould, P.L. (2013), Thin Plates and Shells, in Introduction to Linear Elasticity, Springer, 187-228.
- Haldar, S., Majumder, A. and Kalita, K. (2019), "Bending analysis of composite skew cylindrical shell panel", Struct. Eng. Mech., 70(1), 125-131. https://doi.org/10.12989/sem.2019.70.1.125.
- He, J.H. (2020), "A new proof of the dual optimization problem and its application to the optimal material distribution of SiC/graphene composite", Rep. Mech. Eng., 1(1), 187-191. https://doi.org/10.31181/rme200101187h.
- Jin, G., Ye, T., Chen, Y., Su, Z. and Yan, Y. (2013), "An exact solution for the free vibration analysis of laminated composite cylindrical shells with general elastic boundary conditions", Compos. Struct., 106, 114-127. https://doi.org/10.1016/j.compstruct.2013.06.002.
- Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2017), "Nonlinear thermal buckling behaviour of laminated composite panel structure including the stretching effect and higher-order finite element", Adv. Mater. Res., 6(4), 349-361. https://doi.org/10.12989/amr.2017.6.4.349.
- Khayat, M., Poorveis, D., Moradi, S. and Hemmati, M. (2016), "Buckling of thick deep laminated composite shell of revolution under follower forces", Struct. Eng. Mech., 58(1), 59-91. https://doi.org/10.12989/sem.2016.58.1.059.
- Khdeir, A.A., Rajab, M.D. and Reddy, J.N. (1992), "Thermal effects on the response of cross-ply laminated shallow shells", Int. J. Solid. Struct., 29(5), 653-667. https://doi.org/10.1016/0020-7683(92)90059-3.
- Kim, K., An, K., Kwak, S., Ri, H., Ri, K. and Kim, H. (2021), "Free vibration analysis of inversely coupled composite laminated shell structures with general boundary condition", AIP Adv., 11(4), 045309. https://doi.org/10.1063/5.0045379.
- Koiter, W.T. (1961), "A consistent first approximation in the general theory of thin elastic shells", Proc. IUTAM Symp. on the Theory of Thin Elastic Shells, North-Holland, Amsterdam.
- Kraus, H. (1967), Thin Elastic Shells, John Wiley & Sons, London.
- Kumar Jena, S., Chakraverty, S., Malikan, M. and Sedighi, H.M. (2020), "Implementation of Hermite-Ritz method and Navier's technique for vibration of functionally graded porous nanobeam embedded in Winkler-Pasternak elastic foundation using bi-Helmholtz nonlocal elasticity", Mech. Mater. Struct., 15(3), 405-434. https://doi.org/10.2140/jomms.2020.15.405.
- Kumar, A., Chakrabarti, A. and Bhargava, P. (2015), "Vibration analysis of laminated composite skew cylindrical shells using higher order shear deformation theory", J. Vib. Control, 21(4), 725-735. https://doi.org/10.1177/1077546313492555.
- Lee, J. (2017), "Free vibration analysis of joined spherical-cylindrical shells by matched Fourier-Chebyshev expansions", Int. J. Mech. Sci., 122, 53-62. https://doi.org/10.1016/j.ijmecsci.2016.12.025.
- Leissa, A.W. (1973), "Vibration of shells", NASA SP-288, Nasa Report.
- Liew, K.M. and Lim, C.W. (1995), "A Ritz vibration analysis of doubly curved rectangular shallow shells using a refined first-order theory", Comput. Meth. Appl. Mech. Eng., 127(1-4), 145-162. https://doi.org/10.1016/0045-7825(95)00837-1.
- Liu, B., Xing, Y.F., Qatu, M.S. and Ferreira AJM. (2012), "Exact characteristic equations for free vibrations of thin orthotropic circular cylindrical shells", Compos. Struct., 94(2), 484-493. https://doi.org/10.1016/j.compstruct.2011.08.012.
- Lore, S., Sarangan, S. and Singh, B.N. (2021), "Nonlinear free vibration analysis of laminated composite plates and shell panels using nonpolynomial higher-order shear deformation theory", Mech. Adv. Mater. Struct., 1-16. https://doi.org/10.1080/15376494.2021.1959971.
- Madenci, E. (2019). "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. http://doi.org/10.12989/sem.2019.69.4.427.
- Madenci, E. (2021), "Free vibration and static analyses of metal-ceramic FG beams via high-order variational MFEM", Steel Compos. Struct., 39(5), 493-509. https://doi.org/10.12989/scs.2021.39.5.493.
- Madenci, E. and Gulcu, S. (2020), "Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM", Struct. Eng. Mech., 75(5), 633-642. https://doi.org/10.12989/sem.2020.75.5.633.
- Madenci, E. and Ozutok, A. (2017), "Variational approximate and mixed-finite element solution for static analysis of laminated composite plates", Solid State Phenomena, 267, 35-39. https://doi.org/10.4028/www. scientific.net/SSP.267.35.
- Madenci, E. and Ozutok, A. (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. https://doi.org/10.12989/sem.2020.73.1.097.
- Mantari, J.L., Oktem, A.S. and Guedes Soares, C. (2012), "Bending and free vibration analysis of isotropic and multilayered plates and shells by using a new accurate higher-order shear deformation theory", Compos. Part B: Eng., 43(8), 3348-3360. https://doi.org/10.1016/j.compositesb.2012.01.062.
- Mastrogiannakis, I. and Vosniakos, G.C. (2020), "Exploring structural design of the francis hydro-turbine blades using composite materials", Facta Universitatis, Ser.: Mech. Eng., 18(1), 43-55. https://doi.org/10.22190/FUME190609001M.
- Miller, C.J., Millavec, W.A. and Kicher, T.P. (1981), "Thermal stress analysis of layered cylindrical shells", AIAA J., 19(4), 523-530. https://doi.org/10.2514/3.7790.
- Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates", J. Appl Mech, Trans., 18(1), 31-38. https://doi.org/10.1115/1.4010217.
- Moraveji Tabasi, H., Eskandari Jam, J., Malekzadeh Fard, K. and Heydari Beni, M. (2020), "Buckling and free vibration analysis of fiber metal-laminated plates resting on partial elastic foundation", J. Appl. Comput. Mech., 6(1), 37-51. https://doi.org/10.22055/jacm.2019.28156.1489.
- Naghdi, P.M. (1972), Theory of Shells and Plates, Handbuch der Physik, Springer-Verlag, Berlin.
- Nanda, N. and Pradyumna, S. (2011), "Nonlinear dynamic response of laminated shells with imperfections in hygrothermal environments", J. Compos. Mater., 45(20), 2103-2112. https://doi.org/10.1177/0021998311401061.
- Noor, A.K. and Burton, W.S. (1990), "Assessment of computational models for multilayered composite shells", Appl. Mech. Rev., 43(4), 67-97. https://doi.org/10.1115/1.3119162.
- Norouzi, M., Rahmani, H. and Birjandi, A.K. (2019), "A new exact analysis for anisotropic conductive heat transfer in truncated composite spherical shells", J. Mech., 35(5), 677-691. https://doi.org/10.1017/jmech.2018.54.
- Oktem, A.S. and Soares, C.G. (2012), "Analysis of the static response of cross-ply simply supported plates and shells based on a higher-order theory", Mech. Compos. Mater., 48, 65-76. https://doi.org/10.1007/s11029-012-9252-z.
- Oktem, A.S., Mantari, J.L. and Soares, C.G. (2012), "Static response of functionally graded plates and doubly-curved shells based on a higher order shear deformation theory", Eur. J. Mech. A Solid., 36, 163-172. https://doi.org/10.1016/j.euromechsol.2012.03.002.
- Pagano, N.J. (1970), "Exact solutions for bidirectional composites and sandwich plates", J. Compos. Mater., 4(1), 20-34. https://doi.org/10.1177/002199837000400102.
- Pai, P.F. (1995), "A new look at the shear correction factors and warping functions of anisotropic laminates", Int. J. Solid. Struct., 32(16), 2295-2313. https://doi.org/10.1016/0020-7683(94)00258-X.
- Panda, S.K. and Singh, B.N. (2013), "Thermal postbuckling behavior of laminated composite spherical shell panel using NFEM", Mech. Bas. Des. Struct. Mach., 41(4), 468-488. https://doi.org/10.1080/15397734.2013.797330.
- Parhi, A. and Singh, B.N. (2014), "Stochastic response of laminated composite shell panel in hygrothermal environment", Mech. Bas. Des. Struct., 42(4), 454-482. https://doi.org/10.1080/15397734.2014.888006.
- Reddy, J.N. (1984a), "Exact solutions of moderately thick laminated shells", J. Eng. Mech., 110(5), 794-809. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:5(794).
- Reddy, J.N. (1984b), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd Edition, CRC, Boca Raton, FL.
- Reddy, J.N. and Liu, C.F. (1985), "A higher-order shear deformation theory of laminated elastic shells", Int. J. Eng. Sci., 23(3), 319-330. https://doi.org/10.1016/0020-7225(85)90051-5.
- Sahoo, S. (2014), "Laminated composite stiffened shallow spherical panels with cutouts under free vibration-A finite element approach", Int. J. Eng. Sci. Technol., 17(4), 247-259. https://doi.org/10.1016/j.jestch.2014.07.002.
- Sahoo, S.S., Panda, S.K. and Mahapatra, T.R. (2016), "Static, free vibration and transient response of laminated composite curved shallow panel-an experimental approach", Eur. J. Mech.-A/Solid., 59, 95-113. https://doi.org/10.1016/j.euromechsol.2016.03.014.
- Sahu, S.K. and Datta, P.K. (2001), "Parametric resonance characteristics of laminated composite doubly curved shells subjected to non-uniform loading", J. Reinf. Plast. Compos., 20(18), 1556-1576. http://doi.org/10.1106/U2VL-8673-4K1NJ1W7.
- Sayyad, A.S. and Ghugal, Y.M. (2019), "Static and free vibration analysis of laminated composite and sandwich spherical shells using a generalized higher-order shell theory", Compos. Struct, 219, 129-146. https://doi.org/10.1016/j.compstruct.2019.03.054.
- Selcuk, S., Fisher, A.l. and Williams, Ch. (2005), "Biomimesis and the geometric definition of shell structures in architecture", GA2005 8th Generative Art Conference, Politecnico di Milano University, Department of Architecture and Planning.
- Shang, X. (2001), "Exact solution for free vibration of a hermetic capsule", Mech. Res. Commun., 28(3), 283-288. https://doi.org/10.1016/S0093-6413(01)00175-6.
- Shariati, A., Jung, D.W., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020), "On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams", Mate., 13(7), 1707. https://doi.org/10.3390/ma13071707.
- Sheng, H. and Ye, J. (2003), "A three-dimensional state space finite element solution for laminated composite cylindrical shells", Comput. Meth. Appl. Mech. Eng., 192(22), 2441-2459. https://doi.org/10.1016/S0045-7825(03)00265-2.
- Shinde, B.M. and Sayyad, A.S. (2020), "Analysis of laminated and sandwich spherical shells using a new higher-order theory", Adv. Aircraft Spacecraft Sci., 7(1), 19-40. https://doi.org/10.12989/aas.2020.7.1.019.
- Shu, X.P. (1997), "A refined theory of laminated shells with higher-order transverse shear deformation", Int. J. Solid. Struct., 34(6), 673-683. https://doi.org/10.1016/S0020-7683(96)00048-0.
- Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech, 94(3), 195-220. https://doi.org/10.1007/BF01176650.
- Srinivas, S. (1974), "Analysis of laminated, composite, circular cylindrical shells with general boundary conditions", NASA Technical Report R-412.
- Thakur, S.N., Chakraborty, S. and Ray, C. (2019), "Reliability analysis of laminated composite shells by response surface method based on HSDT", Struct. Eng. Mech., 72(2), 203-216. https://doi.org/10.12989/sem.2019.72.2.203.
- Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020- 7225(91)90165-Y.
- Ventsel, E. and Krauthammer, T. (2002), "Thin plates and shells: Theory, analysis, and applications", Appl. Mech. Rev., 55(4), B72-B73. https://doi.org/10.1115/1.1483356.
- Viswanathan, K.K., Kim, K.S., Lee, J.H., Koh, H.S. and Lee, J.B. (2008), "Free vibration of multi-layered circular cylindrical shell with cross-ply walls, including shear deformation by using spline function method", J. Mech. Sci. Tech., 22(11), 2062-2075. https://doi.org/10.1007/s12206-008-0747-4.
- Wang, Q., Shi, D., Liang, Q. and Pang, F. (2017), "Free vibrations of composite laminated doubly-curved shells and panels of revolution with general elastic restraints", Appl. Math. Model., 46, 227-262. https://doi.org/10.1016/j.apm.2017.01.070.
- Whitney, J.M. (1973), "Shear correction factors for orthotropic laminates under static loads", J. Appl. Mech., 40(1), 302-304. https://doi.org/10.1115/1.3422950.
- Yuan, Y., Zhao, K. and Xu, K. (2019), "Enhancing the static behavior of laminated composite plates using a porous layer", Struct. Eng. Mech., 72(6), 763-774. https://doi.org/10.12989/sem.2019.72.6.763.
- Zenkour, A.M. (2015), "Thermal bending of layered composite plates resting on elastic foundations using four-unknown shear and normal deformations theory", Compos. Struct., 122, 260-270. http://doi.org/10.1016/j.compstruct.2014.11.064.
- Zhen, N., Kai, Z., Xiuchang, H. and Hongxing, H. (2019), "Free vibration of stiffened laminated shells of revolution with a free-form meridian and general boundary conditions", Int. J. Mech. Sci., 157-158, 561-573. https://doi.org/10.1016/j.ijmecsci.2019.03.040.
- Zhen, W. and Wanji, C. (2008), "A global-local higher order theory for multilayered shells and the analysis of laminated cylindrical shell panels", Compos. Struct., 84(4), 350-361. https://doi.org/10.1016/j.compstruct.2007.10.006.
- Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S.R. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., 26(2), 125-137. https://doi.org/10.12989/scs.2018.26.2.125.