DOI QR코드

DOI QR Code

Properties of Smart Vapor Self-Releasing Composite Films to Microwave Packaging

증기 자가방출 스마트 전자레인지 포장재 적용을 위한 복합필름 특성연구

  • Wooseok, Song (Department of Packaging & Logistics, Yonsei University) ;
  • Hojun, Shin (Department of Packaging & Logistics, Yonsei University) ;
  • Jongchul, Seo (Department of Packaging & Logistics, Yonsei University)
  • 송우석 (연세대학교 과학기술융합대학 패키징및물류학과) ;
  • 신호준 (연세대학교 과학기술융합대학 패키징및물류학과) ;
  • 서종철 (연세대학교 과학기술융합대학 패키징및물류학과)
  • Received : 2022.11.11
  • Accepted : 2022.12.05
  • Published : 2022.12.31

Abstract

The demands for Home Meal Replacement (HMR) products are continuously increasing owing to the convenience of instant food and online food delivery. Ready-to-heat (RTH) products have received massive attention in the HMR industry because these products can be easily warmed using a microwave oven. However, the conventional microwave packaging should be opened before microwave heating to prevent bursting or food loss owing to the steam-pressure build-up inside the package. Open packaging might lead to non-uniform food heating and cross-contamination. Therefore, packaging materials that are able to release steam without opening are of interest to the HMR industry. In this study, polylactic acid(PLA)/polyethylene glycol(PEG)/nanoclay composite films were manufactured using an extrusion method as packaging materials with a smart steam-releasing function. The introduction of PEG to the PLA imparted a steam self-releasing feature to the composite films owing to the morphology change of composite films during microwave heating. Further, PEG increased the ductility of PLA, which in turn prevented bursting caused due to the steam-pressure build-up. The uniform dispersion of nanoclay obtained by a twin-screw extrusion led to stronger mechanical properties. Therefore, the smart composite films developed here can be applied as microwave packaging materials with a self-releasing function.

본 연구에서는 전자레인지 조리 시 발생하는 포장 내부의 수증기를 스스로 방출할 수 있는 PLA 기반 스마트 복합 필름을 제조하였다. 제조된 복합필름의 전자레인지 조리가 가능한 HMR 제품의 포장재로써 적용가능성을 평가하기 위해 DSC, UTM, GTR 및 전자레인지 모의 적용 평가를 통해 열적 특성, 기계적 특성, 온도 구간별 기체 투과도 및 전자레인지 적용성을 평가하였다. 복합필름의 열적 특성을 확인한 결과, PLA와 PEG의 강한 화학적 상호작용을 확인하였고 본 연구에서 기대한 전자레인지 조리 온도 내에서 PEG가 용융되는 것을 확인하였다. 또한, 제조된 복합필름은 PEG의 첨가로 인해 인장강도는 감소하였지만 연신율이 증가하였고, nanoclay의 함량이 증가함에 따라 감소된 인장강도가 일부 회복한 것을 확인하였다. 또한, 기체투과도의 경우 PEG의 Tm1 이상인 65℃ 부터 PEG가 용융되면서 투과도가 비약적으로 증가한 것을 확인하였다. 전자레인지 모의 적용 평가를 통해 pure PLA는 내부 수증기를 방출하지 못하고 그 압력을 버티지 못해 폭발한 것에 비해, 복합필름의 경우 전자레인지 수증기 발생 온도에서 그 형태를 유지하며 효과적으로 내부 수증기를 자가방출한 것을 확인하였다. 이러한 결과를 바탕으로 본 연구에서 제조한 스마트 복합필름은 포장재로써 향후 전자레인지 조리 HMR식품 포장재로써 적용될 수 있다.

Keywords

Acknowledgement

이 논문은 2020년 정부(교육부)의 재원으로 한국연구재단의 기초연구사업 지원을 받아 수행된 과제의 결과임 [과제번호 : 2020R1A2B5B01001797].

References

  1. Park, M.H., Kwon, M.W. and Nah, K. 2019. Study on repurchase intention of RTP HMR products: Focused on meal kit. The Journal of the Korea Contents Association 19(2): 548-557. https://doi.org/10.5392/JKCA.2019.19.02.548
  2. Lee, Y.J., Kim, Y.K. and Yoon, A.R. 2021. A Study on the problems and solutions in the HMR market. Journal of Foodservice Management Society of Korea 24(5): 55-79.
  3. Park, S.J., Choi, J.W. and Heo, S.Y. 2015. A study on the status and policy issues the home meal replacement (HMR) industry in Korea. Korea Rural Economic Institute R742: 1-150.
  4. Jang, S.H. 2017. Trend and future direction for domestic HMR products. Food Industry And Nutrition. 22(1): 13-17.
  5. Lee, B.S., Park, K.H. and Cho, J.H. 2011. A study on the effect of selection attributes on consumer satisfaction and repurchase intention about HMR-In case of ready-to-end-cook. Culinary Science and Hospitality Research. 17(2): 85-97. https://doi.org/10.20878/cshr.2011.17.2.006
  6. Han, H.K. and Park, C.Y. 2001. Functional food packaging film. Polymer Science and Technology. 12(2): 174-182.
  7. Vermeiren, L., Devlieghere, F., van Beest, M., de Kruijf, N. and Debevere, J. 1999. Developments in the active packaging of foods. Trends in Food Science & Technology. 10(3): 77-86. https://doi.org/10.1016/S0924-2244(99)00032-1
  8. Yoon, C.S., Hong, S.I., Cho, A.R., Lee, H.S., Park, H.W. and Lee, K.T. 2015. Analysis of the causes of deformation of packaging materials used for ready-to-eat foods after microwave heating. Korean Journal of Food Science and Technology. 47(1): 63-69. https://doi.org/10.9721/KJFST.2015.47.1.63
  9. 유현정, 채우영, 김현경, 서백채, 이진영. 2020. 간편식품의 가공과 식품안전. 식품저장과 가공산업. 19(2): 134-145.
  10. Lee, H.S., Cho, A.R., Moon, S.K., Yoon, C.S. and Lee, K.T. 2015. Investigation on the heating patterns depending on the packaging materials during microwave cooking. Korea Society of Packaging Science & Technology. 21(1): 27-34. https://doi.org/10.20909/kopast.2015.21.1.27
  11. Auras, R., Harte, B. and Selke, S. 2004. An overview of polylactides as packaging materials. Macromolecular bioscience. 4(9): 835-864. https://doi.org/10.1002/mabi.200400043
  12. Park, B.S., Song, J.C., Park, D.H. and Yoon, K.B. 2011. PLA/chain-extended PEG blends with improved ductility. Journal of Applied Polymer Science. 123(4): 2360-2367. https://doi.org/10.1002/app.34823
  13. Paberit, R., Rilby, E., Gohl, J., Swenson, J., Refaa, Z., Johansson, P. and Jansson, H. 2020. Cycling stability of poly (ethylene glycol) of six molecular weights: influence of thermal conditions for energy applications. ACS Applied Energy Materials. 3(11): 10578-10589.
  14. Zhen, S.J. 2001. The effect of chain flexibility and chain mobility on radiation crosslinking of polymers. Radiation Physics and Chemistry. 60(4-5): 445-451.
  15. Mohapatra, A.K., Mohanty, S. and Nayak, S.K. 2014. Effect of PEG on PLA/PEG blend and its nanocomposites: A study of thermo mechanical and morphological characterization. Polymer Composites. 35(2): 283-293. https://doi.org/10.1002/pc.22660
  16. Hassouna, F., Raquez, J.M., Addiego, F., Dubois, P., Toniazzo, V. and Ruch, D. 2011. New approach on the development of plasticized polylactide (PLA): Grafting of poly (ethylene glycol) (PEG) via reactive extrusion. European Polymer Journal. 47(11): 2134-2144. https://doi.org/10.1016/j.eurpolymj.2011.08.001
  17. Lee, G.G., Lee, H.M. and Kim, Y.H. 2019. Thermal and mechanical properties of poly (L-lactic acid) films plasticized with propylene carbonate. Polymer (Korea). 43(1): 113-122. https://doi.org/10.7317/pk.2019.43.1.113
  18. Park, S.J., Jun, B.R., Song, S.Y., Choi, G.Y. and Rhee, J.M. 2003. Effects of dispersivity of clay on thermal stabilities of PP/clay nanocomposites. Polymer (Korea). 27(5): 458-463.
  19. Peelman, N., Ragaert, P., Ragaert, K., De Meulenaer, B., Devlieghere, F. and Cardon, L. 2015. Heat resistance of new biobased polymeric materials, focusing on starch, cellulose, PLA, and PHA. Journal of Applied Polymer Science. 132(48): 42305-42320.
  20. Darie, R.N., Paslaru, E., Sdrobis, A., Pricope, G.M., Hitruc, G.E., Poiata, A., Baklavaridis, A. and Vasile, C. 2014. Effect of nanoclay hydrophilicity on the poly (lactic acid)/clay nanocomposites properties. Industrial & Engineering Chemistry Research. 53(19): 7877-7890. https://doi.org/10.1021/ie500577m
  21. Shin, H., Thanakkasaranee, S., Sadeghi, K. and Seo, J. 2022. Preparation and characterization of ductile PLA/PEG blend films for eco-friendly flexible packaging application. Food Packaging and Shelf Life. 34: 100966.
  22. Oh, W.T., Lee, E.K. and Choi, S.Y. 2009. A Study on the mechanical properties of organo-clay filled NR/MMT nanocomposites. Elastomers and Composites. 44(4): 455-465.
  23. Cheon, J.M., Jeong, B.Y., Yoo, C.S., Park, D.J., Bae, J.K. and Chun, J.H. 2007. Synthesis and characterization of waterborne polyurethane using nanoclay. Journal of Adhesion and Interface. 8(4): 1-7.
  24. Thanakkasaranee, S., Kim, D. and Seo, J. 2018. Preparation and characterization of poly (ether-block-amide)/polyethylene glycol composite films with temperature-dependent permeation. Polymers. 10(2): 225.