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SUMS OF DUAL TOEPLITZ PRODUCTS ON THE

WEIGHTED SPACES

Young Joo Lee

Abstract. On the setting of the orthogonal complement of the weighted

Bergman space, we study the problem of when a finite sum of dual
Toeplitz products is compact or zero. Our results extend several known

results on the unweighted space to the weighted spaces.

1. Introduction

For a fixed integer n ≥ 1, we let B be the unit ball in the n-dimensional
complex space Cn and S := ∂B be the unit sphere. Also, let σ denote the
rotation-invariant positive Borel measure on S normalized to have total mass
1. Let ρ denote a positive probability Borel measure on [0, 1) and µ be the
product measure of ρ and σ. So, µ is a regular Borel probability measure on
B such that ∫

B

f(z) dµ(z) =

∫ 1

0

∫
S

f(rζ) dσ(ζ) dρ(r)

holds for every f ∈ L1. Here, Lp := Lp(B,µ) for 0 < p ≤ ∞.
The weighted Bergman space A2(µ) is the subspace of L2 consisting of all

holomorphic functions on B. In order to ensure the completeness of A2(µ),
we are concerned with measures µ whose support is not entirely contained in
a compact subset of B. In other words, we consider measures µ such that
µ({z ∈ B : |z| ≥ r}) > 0 for all 0 < r < 1, Equivalently, we assume throughout
the paper that the measure ρ satisfies

ρ([r, 1)) > 0 for every r ∈ [0, 1).(1)

Then, by using (1), one can see that for any compact subset K of B, there
exists a constant C, depending only on K and n, for which

sup
z∈K

|f(z)| ≤ C

(∫
B

|f |2 dµ
) 1

2

(2)
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for every f ∈ A2(µ). Then, by a routine argument, one can see that (2) implies
that A2(µ) is a closed subspace of L2 and hence A2(µ) is a Hilbert space. Let
P : L2 → A2(µ) be the Hilbert space orthogonal projection and write A2(µ)⊥

for the orthogonal complement of A2(µ) as usual.

Given φ ∈ L∞, we define an operator Sφ : A2(µ)⊥ → A2(µ)⊥ by

Sφf = (I − P )(φf)

for functions f ∈ A2(µ)⊥. We call Sφ the dual Toeplitz operator with symbol
φ. Clearly, Sφ is a bounded linear operator on A2(µ)⊥.

For the case of dρ(r) = 2nr2n−1dr, the corresponding space A2(µ) is the
well known classical Bergman space on B. On the setting of the orthogonal
complement of the classical Bergman space of the unit disk, Stroethoff and
Zheng [9] characterized (essentially) commuting dual Toeplitz operators and
obtained a characterization of when a product of two dual Toeplitz operators
is another dual Toeplitz operator. Later, their results have been extended to
the unit ball as in [6], [7] and references therein. Recently, Kong and Lu [4]
recovered the known results above concerning the commutativity or product
problem by characterizing zero sums of products of two dual Toeplitz operators.
Also, the corresponding problems on the Hardy space, Dirichlet space and Fock
space have been studied in [3], [5] and [1] respectively.

Motivated by the results mentioned above, in this paper, we consider opera-
tors which are finite sums of products of several dual Toeplitz operators on the
orthogonal complement of the weighted Bergman space A2(µ) under consider-
ation. We first show that the compactness for operators which are finite sums
of products of several dual Toeplitz operators with continuous symbol implies
that the corresponding sum of products of symbols equals 0; see Theorem 5.

Using this result on the compactness, we next consider finite sums of prod-
ucts of two dual Toeplitz operators with pluriharmonic symbol and obtain a
characterization of when such an operator equals 0; see Theorem 8. As ap-
plications, we obtain several consequences concerning commuting and product
problem for dual Toeplitz operators. Also, we characterize normal dual Toeplitz
operators. See Corollaries 9 and 10. Our results extend several known results
on the orthogonal complement of the classical Bergman space to that of our
weighted Bergman space.

2. Preliminaries

Given a multi-index α = (α1, · · · , αn) where each αk is a nonnegative inte-
ger, we use

|α| = α1 + · · ·+ αn, α! = α1! · · ·αn!,



620 Young Joo Lee

and write zα = zα1
1 · · · zαn

n for z = (z1, · · · , zn) ∈ B. Also, we will use the inner
product notation

⟨f, g⟩ =
∫
B

fg dµ

and let ||f || =
√
⟨f, f⟩ for functions f, g ∈ L2. Given a multi-index α, since∫

S

|ζα|2 dσ(ζ) = (n− 1)!α!

(n− 1 + |α|)!
,

we have

ρ̂(α) :=

∫
B

|zα|2 dµ(z) = (n− 1)!α!

(n− 1 + |α|)!

∫ 1

0

r2|α| dρ(r);

see Proposition 1.4.10 of [8]. By (2), we see that each point evaluation is a
bounded linear functional on A2(µ). Hence, for each z ∈ B, there exists a
unique function Kz ∈ A2(µ) which has the following reproducing property

f(z) = ⟨f,Kz⟩

for every f ∈ A2(µ). Since the set {zα : |α| ≥ 0} spans a dense subset of A2(µ),
it can be easily seen that Kz can be written as

Kz(w) =
∑
|α|≥0

1

ρ̂(α)
wαzα, w ∈ B.(3)

Thus the projection P can be represented as the following integral formula

Pψ(z) =

∫
B

ψ(w)Kz(w) dµ(w), z ∈ B(4)

for every ψ ∈ L2.

3. Compact sums of dual Toeplitz products

In this section, we study the compactness for operators being finite sums of
products of several dual Toeplitz operators. We will use some ideas as in [1]
and [9] in our proofs.

Given a ∈ B and 0 < ℓ < 1− |a|, we define

Ga,ℓ(z) = (z1 − a1)χB(a;ℓ)(z), z ∈ B

where B(w; r) is the euclidean ball centered at w with radius r and χE is the
usual characteristic function for a set E. Also, wj denotes the j-th component
of a point w ∈ B. Put

ga,ℓ :=
Ga,ℓ

||Ga,ℓ||
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for simplicity. Then, by an application of the mean value property for holo-
morphic functions, one sees that each ga,ℓ belongs to A2(µ)⊥. Also, using the
Cauchy-Schwarz inequality, we have

|⟨φ, ga,ℓ⟩|2 ≤ ||ga,ℓ||2
∫
B(a;ℓ)

|φ|2 dµ =

∫
B(a;ℓ)

|φ|2 dµ

for all a, ℓ and φ ∈ L2, which shows that ga,ℓ converges weakly to 0 in A2(µ)⊥

as ℓ→ 0.

The following proposition will be useful in our characterization of the com-
pactness. The notation C(B) stands for the set of all continuous functions on
B.

Proposition 1. For u ∈ C(B) ∩ L∞, we have

lim
ℓ→0

||Suga,ℓ|| = |u(a)|

for all a ∈ B.

Proof. Fix a ∈ B. Since u is continuous at a, we can see that

lim
ℓ→0

||(u− u(a))ga,ℓ|| = 0

and hence

lim
ℓ→0

||Su−u(a)ga,ℓ|| ≤ lim
ℓ→0

||(u− u(a))ga,ℓ|| = 0.

Since S1 is the identity on A2(µ)⊥ and each ga,ℓ has norm 1, the above gives
the desired result. The proof is complete.

As a simple application of Proposition 1, we characterize compact dual
Toeplitz operators with continuous symbol.

Corollary 2. Let u ∈ C(B)∩L∞. Then Su is compact if and only if u = 0
on B.

Given u ∈ L∞, the Hankel operator Hu : A2(µ) → A2(µ)⊥ with symbol u
is the bounded linear operator defined by

Huf = (I − P )(uf)

for f ∈ A2(µ). It is not hard to see that the adjoint operator H∗
u of Hu is given

by H∗
uf = P (ūf) for functions f ∈ A2(µ)⊥.

Lemma 3. Let u, v ∈ L∞. Then we have

lim
ℓ→0

||HuH
∗
vga,ℓ|| = 0

for all a ∈ B.
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Proof. Fix a ∈ B and let 0 < ℓ < 1−|a|
2 . Note from (4) that

|H∗
vga,ℓ(z)|2 = |P (v̄ga,ℓ)(z)|2

= |
∫
B(a;ℓ)

v̄ga,ℓKz dµ|2

≤ ||ga,ℓ||2||v||2∞
∫
B(a;ℓ)

|Kz|2 dµ

= ||v||2∞
∫
B(a;ℓ)

|Kz|2 dµ

for all z ∈ B. Also, by (2) and the reproducing property, one can see that there
exists a constant C, depending only on a and n, such that

Kw(w) ≤ C||Kw|| = C
√
⟨Kw,Kw⟩ = C

√
Kw(w)

for every w ∈ B(a; 1−|a|
2 ) and hence

sup
w∈B(a;ℓ)

Kw(w) ≤ sup
w∈B(a;

1−|a|
2 )

Kw(w) ≤ C2.

Since |Kz(w)| = |Kw(z)| for all z, w ∈ B by (3), it follows from the reproducing
property that

||HuH
∗
vga,ℓ||2 = ||(I − P )(uH∗

vga,ℓ)||2

≤ ||u||2∞
∫
B

|H∗
vga,ℓ|2 dµ

≤ ||u||2∞||v||2∞
∫
B

∫
B(a;ℓ)

|Kz(w)|2 dµ(w) dµ(z)

= ||u||2∞||v||2∞
∫
B(a;ℓ)

∫
B

|Kw(z)|2 dµ(z) dµ(w)

= ||u||2∞||v||2∞
∫
B(a;ℓ)

Kw(w)dµ(w)

≤ C2||u||2∞||v||2∞
∫
B(a;ℓ)

dµ

for each ℓ, which implies the desired result. The proof is complete.

We let H be the set of all operators of the form
∑M

j=1 LjHuH
∗
v whereM ≥ 1

is an integer, Lj is a bounded linear operator on A2(µ)⊥ and u, v ∈ L∞. By
Lemma 3, one can see that

lim
ℓ→0

||Kga,ℓ|| = 0(5)

for every a ∈ B and K ∈ H . Since

SuSv = Suv −HuH
∗
v̄(6)
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for any u, v ∈ L∞, the product SuSv can be written as a sum of an operator in
H and a single dual Toeplitz operator with symbol uv. The following lemma
shows that same is true for operators which are products of several dual Toeplitz
operators.

Lemma 4. Let uj ∈ L∞ for j = 1, · · · , N . Then

Su1
· · ·SuN

= Su1u2···uN
+K

for some K ∈ H .

Proof. As mentioned above, the result is true for N = 2. Now, suppose the
result holds for N − 1 and then by (6)

Su1
· · ·SuN

= Su1
[Su2

· · ·SuN
]

= Su1 [Su2···uN
+K]

= Su1u2···uN
−Hu1H

∗
u2···uN

+ Su1K

for some K ∈ H . Since −Hu1H
∗
u2···uN

+ Su1K ∈ H , the above shows the
desired result. The proof is complete.

The following theorem is the our main result of this section and extends
Theorem 5.1 of [4] to our weighted cases for continuous symbols. The case
Mi = 2 will be used in our characterization of zero sums of dual Toeplitz
products in the next section.

Theorem 5. Let uij ∈ C(B) ∩ L∞. If
∑N

i=1

∏Mi

j=1 Suij
is compact on

A2(µ)⊥, then
∑N

i=1

∏Mi

j=1 uij = 0 on B.

Proof. Put

S :=

N∑
i=1

Mi∏
j=1

Suij
, U :=

N∑
i=1

Mi∏
j=1

uij

for simplicity. By Lemma 4, we see that

S =

N∑
i=1

[
S∏Mi

j=1 uij
+Ki

]
= SU +

N∑
i=1

Ki

for some K1, · · · ,KN ∈ H . For each a ∈ B, recall ga,ℓ converges weakly to 0
in A2(µ)⊥ as ℓ→ 0. Since S is compact by the assumption, (5) shows that

lim
ℓ→0

||SUga,ℓ|| = 0

for all a ∈ B. Now, the result follows from Proposition 1, as desired.

With the same notations S and U above, Theorem 5 shows that S is a
compact perturbation of a dual Toeplitz operator with continuous symbol if
and only if S is a compact perturbation of SU . Also, the following application
of Theorem 5 shows that a product of several dual Toeplitz operators with
harmonic symbol can only be zero or compact in a trivial case, which extends
Corollary 8.8 of [9] to our weighted cases.
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Corollary 6. Let u1, · · · , uN ∈ L∞ be harmonic. Then the following state-
ments are equivalent.

(a) Su1
· · ·SuN

is compact.
(b) Su1

· · ·SuN
= 0

(c) uj = 0 for some j.

4. Zero sums of dual Toeplitz products

In this section, we characterize zero sums of products of two dual Toeplitz
operators with pluriharmonic symbol. Recall that a complex valued function
on B is said to be pluriharmonic if its restriction to an arbitrary complex
line is harmonic as a function of one complex variable. As is well known,
each pluriharmonic function u can be decomposed as u = f + ḡ for some
f, g ∈ H(B), the set of all holomorphic functions on B. Note that u ∈ L∞

implies f, g ∈ A2(µ). Also, by the explicit formulas (3) and (4) for Kz and P
respectively, we can see

Pu = f + g(0).(7)

The following proposition will be useful in our characterization. We re-
mark that the converse of (b) below does not hold in general. Consider Ga,ℓ

introduced at Section 3 for example.

Proposition 7. For u ∈ L∞, the following statements hold.

(a) The following conditions are equivalent.
(a1) Hū = 0.
(a2) P (uφ) = 0 for every φ ∈ A2(µ)⊥.
(a3) ū ∈ A2(µ).

(b) One of conditions in (a) above implies that Pu is constant.
(c) In addition, if u is pluriharmonic, the converse of (b) is also true.

Proof. Since H∗
ūφ = P (uφ) for every φ ∈ A2(µ)⊥, we see (a1) and (a2) are

equivalent. If (a1) holds, then 0 = Hū1 = ū−P (ū) and hence (a3) holds. Since
(a3) =⇒ (a1) holds clearly, we see (a1) and (a3) are equivalent. If (a3) holds,
then ūKz ∈ A2(µ) for all z ∈ B. Thus, by an application of the mean value
property for holomorphic functions, we see

Pu(z) = ⟨u,Kz⟩ = ⟨1, ūKz⟩ = u(0)Kz(0) = u(0), z ∈ B,

so (b) holds. Finally, (7) shows that (c) holds. The proof is compete.

Now we are ready to characterize zero sums of products of two dual Toeplitz
operators. Given an integer N ≥ 1 and a = (a1, · · · , aN ), b = (b1, · · · , bN ) ∈
CN , we use the notation a · b = a1b1 + · · ·+ aNbN . Also, we let

Rf(z) =
n∑

i=1

zi
∂f

∂zi
(z), R̃f(z) =

n∑
i=1

zi
∂f

∂zi
(z)
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for z = (z1, . . . , zn) ∈ B. Given u, v ∈ L∞, we note that

SuSvf = uvf − uP (vf)− P (uvf) + P [uP (vf)](8)

for functions f ∈ A2(µ)⊥.

Theorem 8. Let uj , vj ∈ L∞ be pluriharmonic for j = 1, · · · , N and

h ∈ L∞ ∩ C(B). Then Sh =
∑N

j=1 Suj
Svj if and only if h =

∑N
j=1 ujvj on B

and one of the following equivalent conditions holds.

(a)
∑N

j=1 P (uj)P (vjφ) ∈ H(B) for all φ ∈ A2(µ)⊥.

(b)
∑N

j=1 RP (uj)P (vjφ) = 0 for all φ ∈ A2(µ)⊥.

(c) There exist ϵj , τj ∈ CN for j = 1, · · · , N such that ϵi · τj = 0 for all i, j
and

(PU1, · · · , PUN ) =

N∑
j=1

(PUj)ϵj ,

(PV1, · · · , PVN ) =

N∑
j=1

(PVj)τj

where Uj = uj − uj(0) and Vj = vj − vj(0) for each j.

Proof. Write uj = fj + gj for some fj , gj ∈ A2(µ). Using (8), we have[
Sh −

N∑
j=1

SujSvj

]
φ = φ

(
h−

N∑
j=1

ujvj

)
+

N∑
j=1

ujP (vjφ)

− P
[
φ
(
h−

N∑
j=1

ujvj

)]
− P

[ N∑
j=1

ujP (vjφ)
](9)

for all φ ∈ A2(µ)⊥. By (7), we note that gj = Puj −fj(0) for each j. Then, by
Theorem 5, we see that Sh =

∑N
j=1 SujSvj if and only if h =

∑N
j=1 ujvj and

(a) holds. Thus, in order to complete the proof, it is sufficient to show that
(a), (b) and (c) are all equivalent.

First, by taking R̃ in (a), we see (a) ⇒ (b) holds. Next, by Theorem 3.2
of [2], one can see that (b) holds if and only if there exist ϵj , τj ∈ CN for
j = 1, · · · , N such that ϵi · τj = 0 for all i, j and(

RP (u1), · · · ,RP (uN )
)
=

N∑
k=1

[RP (uk)]ϵk,

(
P (v1φ), · · · , P (vNφ)

)
=

N∑
k=1

[P (vkφ)]τk

(10)



626 Young Joo Lee

for all φ ∈ A2(µ)⊥. Writing ϵk = (ϵ1k, · · · , ϵNk ) and τk = (τ1k , · · · , τNk ) for each
k, we note that (10) is equivalent to that

R

[
P
(
uj −

N∑
k=1

ϵjkuk

)]
= RP (uj)−

N∑
k=1

ϵjkRP (uk) = 0,

P

[(
vj −

N∑
k=1

τ jkvk

)
φ

]
= P (vjφ)−

N∑
k=1

τ jkP (vkφ) = 0

for each j and all φ ∈ A2(µ)⊥. Then, by Proposition 7, the above is equivalent
to that

P
(
uj −

N∑
k=1

ϵjkuk

)
= P

(
uj −

N∑
k=1

ϵjkuk

)
(0),

P
(
vj −

N∑
k=1

τ jkvk

)
= P

(
vj −

N∑
k=1

τ jkvk

)
(0)

(11)

for each j. Noting (Pψ)(0) = P (ψ(0)) for every pluriharmonic ψ ∈ L∞ by (7),
we see that (11) is equivalent to (c), thus (b)⇐⇒ (c) holds. Finally, if (c) holds,
by a direct computation using Proposition 7 again and condition ϵi · τj = 0 for
all i, j, we see that (a) holds. Thus (a), (b) and (c) are all equivalent and the
proof is complete.

The special case of N = 2 in Theorem 8 gives a more concrete description
in the following corollary. Because the proof is similar to that of Corollary 9
of [1], we omit the details.

Corollary 9. Let u, v, x, y ∈ L∞ be pluriharmonic and h ∈ L∞ ∩ C(B).
Then Sh = SuSv+SxSy if and only if h = uv+xy on B and one of the following
conditions holds.

(a) u, x ∈ H(B).
(b) v̄, ȳ ∈ H(B).
(c) u, ȳ ∈ H(B).
(d) v̄, x ∈ H(B).
(e) u+ βx ∈ H(B) and ȳ − βv ∈ H(B) for some constant β ̸= 0.

As immediate applications of Corollary 9, the case of x = v, y = −u and
h = 0 characterizes commuting dual Toeplitz operators. Also, the case x =
y = 0 solves the product problem. More specially, the case h = uv in Corollary
10(b) below characterizes semi-commuting dual Toeplitz operators.

Corollary 10. Let u, v ∈ L∞ be pluriharmonic and h ∈ L∞ ∩ C(B).

(a) Su and Sv are commuting if and only if u, v ∈ H(B), or ū, v̄ ∈ H(B), or
a nontrivial linear combination of u, v is constant.

(b) SuSv = Sh if and only if h = uv on B, and u ∈ H(B) or v̄ ∈ H(B).
(c) SuSv = Suv if and only if u ∈ H(B) or v̄ ∈ H(B).



Sums of dual Toeplitz products 627

As an application of Corollary 10(a), we characterize normal dual Toeplitz
operators with pluriharmonic symbol. Note S∗

u = Sū for all u ∈ L∞.

Corollary 11. Let u ∈ L∞ be pluriharmonic. Then Su is normal if and
only if u(B) is contained in a line in C.

Proof. Without loss of generality, we may assume u(0) = 0. Note that Su is
normal if and only if Su and Sū are commuting. Also, one can easily see that
u(B) is contained in a line if and only if u = αū for some constant α. Now the
result follows from Corollary 10(a). The proof is complete.
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