DOI QR코드

DOI QR Code

Optimal battery selection for hybrid rocket engine

  • Filippo, Masseni (Dipartimento di Ingegneria Meccanica ed Aerospaziale, Politecnico di Torino)
  • Received : 2021.11.25
  • Accepted : 2022.07.05
  • Published : 2022.09.25

Abstract

In the present paper, the optimal selection of batteries for an electric pump-fed hybrid rocket engine is analyzed. A two-stage Mars Ascent Vehicle, suitable for the Mars Sample Return Mission, is considered as test case. A single engine is employed in the second stage, whereas the first stage uses a cluster of two engines. The initial mass of the launcher is equal to 500 kg and the same hybrid rocket engine is considered for both stages. Ragone plot-based correlations are embedded in the optimization process in order to chose the optimal values of specific energy and specific power, which minimize the battery mass ad hoc for the optimized engine design and ascent trajectory. Results show that a payload close to 100 kg is achievable considering the current commercial battery technology.

Keywords

References

  1. Barker, D.H., Belnap, R.D., Hall, A.F. and Kordig, J.W. (1965). "A simplified method of predicting char formation in ablating rocket exit cones (Char formation in solid rocket nozzle exit cones made from reinforced plastic predicted from corrosion standpoint)", Chem. Eng. Prog., Symposium Ser., 61(59), 108-11.
  2. Barrere, M., Jaumotte, A., Fraeijs de Veubeke, B. and Vandenkerckhove, J. (1960), Rocket Propulsion, Rapport du LTAS, Elsevier Publishing Company.
  3. Boiron, A.J. and Cantwell, B. (2013), "Hybrid rocket propulsion and in-situ propellant production for future mars missions", 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, San Jose, CA, July.
  4. Casalino, L. and Pastrone, D. (1994), "Indirect optimization method for impulsive transfers", Astrodynamics Conference, Scottsdale, AZ, August.
  5. Casalino, L. and Pastrone, D. (2005a), "Optimal design and control of hybrid rockets for access to space", 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Tucson, AR, July.
  6. Casalino, L. and Pastrone, D. (2005b), "Oxidizer control and optimal design of hybrid rockets for small satellites", J. Propuls. Power, 21(2), 230-238. https://doi.org/10.2514/1.6556.
  7. Casalino, L. and Pastrone, D. (2010a), "Optimal design of hybrid rocket motors for launchers upper stages", J. Propuls. Power, 26(3), 421-427. https://doi.org/10.2514/1.41856.
  8. Casalino, L. and Pastrone, D. (2010b), "Optimization of a hybrid rocket upper stage with electric pump feed system", 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Nashville, TN, July.
  9. Casalino, L. and Pastrone, D. (2012), "Optimization of hybrid sounding rockets for hypersonic testing", J. Propuls. Power, 28(2), 405-411. https://doi.org/10.2514/1.B34218.
  10. Casalino, L. and Pastrone, D. (2014), "Optimization of hybrid propellant mars ascent vehicle", 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, OH, July.
  11. Casalino, L., Colasurdo, G. and Pastrone, D. (1999), "Optimal low-thrust escape trajectories using gravity assist", J. Guid., Control Dyn., 22(5), 637-642. https://doi.org/10.2514/2.4451.
  12. Casalino, L., Letizia, F. and Pastrone, D. (2012), "Design trade-offs for hybrid rocket motors", 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 4202.
  13. Casalino, L., Masseni, F. and Pastrone, D. (2019), "Viability of an electrically driven pump-fed hybrid rocket for small launcher upper stages", Aerosp., 6(3), 36. https://doi.org/10.3390/aerospace6030036.
  14. Casalino, L., Masseni, F. and Pastrone, D. (2019o), "Robust design approaches for hybrid rocket upper stage", J. Aerosp. Eng., 32(6), 04019087. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001078.
  15. Casalino, L., Masseni, F. and Pastrone, D. (2021a), "Deterministic and robust optimization of hybrid rocket engines for small satellite launchers", J. Spacecraft Rocket., 58(6), 1893-1903. https://doi.org/10.2514/1.A35007.
  16. Casalino, L., Masseni, F. and Pastrone, D. (2021b), "Hybrid rocket engine design optimization at Politecnico di Torino: A review", Aerosp., 8(8), 226. https://doi.org/10.3390/aerospace8080226.
  17. Casalino, L., Masseni, F. and Pastrone, D. (2021c), "Optimal design of electrically-fed hybrid mars ascent vehicle", Aerosp., 8(7), 181. https://doi.org/10.3390/aerospace8070181.
  18. Evans, B. and Cantwell, B. (2019), "Development and testing of Sp7 fuel for mars ascent vehicle application", 2019 IEEE Aerospace Conference, Yellowstone, MN, March.
  19. Funami, Y. (2019), "Two-dimensional fuel regression simulations with level set method for hybrid rocket internal ballistics", Adv. Aircraft Spacecraft Sci., 6(4), 333-348. https://doi.org/10.12989/aas.2019.6.4.333.
  20. Kamps, L., Hirai, S. and Nagata, H. (2021), "Hybrid rockets as post-boost stages and kick motors", Aerosp., 8(9), 253. https://doi.org/10.3390/aerospace8090253.
  21. Karabeyoglu, M.A., Altman, D. and Cantwell, B.J. (2002), "Combustion of liquefying hybrid propellants: Part 1, General theory", J. Propuls. Power, 18(3), 610-620. https://doi.org/10.2514/2.5975.
  22. Kwak, H.D., Kwon, S. and Choi, C.H. (2018), "Performance assessment of electrically driven pump-fed Lox/kerosene cycle rocket engine: Comparison with gas generator cycle", Aerosp. Sci. Technol., 77, 67-82. https://doi.org/10.1016/j.ast.2018.02.033.
  23. McBride, B.J., Reno, M.A. and Gordon, S. (1994), "Cet93 and Cetpc: An interim updated version of the nasa lewis computer program for calculating complex chemical equilibria with applications", NASA TM4557, NASA, Washington.
  24. McCollum, L.T., Schnell, A., Yaghoubi, D., Bean, Q., McCauley, R. and Prince, A. (2019), "Development concepts for Mars Ascent Vehicle (MAV) solid and hybrid vehicle systems", 2019 IEEE Aerospace Conference, Yellowstone, MN, March.
  25. Muirhead, B.K. and Karp, A. (2019), "Mars sample return lander mission concepts", 2019 IEEE Aerospace Conference, Yellowstone, MN, March.
  26. Nagata, H., Nakayama, H., Watanabe, M., Wakita, M. and Totani, T. (2014), "Accuracy and applicable range of a reconstruction technique for hybrid rockets", Adv. Aircraft Spacecraft Sci., 1(3), 273. https://doi.org/10.12989/aas.2014.1.3.273.
  27. Oglesby, B., Prince, A., Story, G. and Kam, A. (2019), "Qualification of a hybrid propulsion system for a mars ascent vehicle", 2019 IEEE Aerospace Conference, Yellowstone, MN, March.
  28. Price, H., Cramer, K., Doudrick, S., Lee, W., Matijevic, J., Weinstein, S., ... & Mitcheltree, R. (2000), "Mars sample return spacecraft systems architecture", 2000 IEEE Aerospace Conference. Proceedings, 7, 357-375.
  29. Saito, Y., Yokoi, T., Neumann, L., Yasukochi, H., Soeda, K., Totani, T., ... & Nagata, H. (2017), "Investigation of axial-injection end-burning hybrid rocket motor regression", Adv. Aircraft Spacecraft Sci., 4(3), 281. https://doi.org/10.12989/aas.2017.4.3.281.
  30. Shotwell, R., Benito, J., Karp, A. and Dankanich, J. (2016), "Drivers, developments and options under consideration for a mars ascent vehicle", 2016 IEEE Aerospace Conference, Yellowstone, MN, March.
  31. Sutton, G.P. and Biblarz, O. (2001), Rocket Propulsion Elements, John Wiley & Sons.