DOI QR코드

DOI QR Code

Experimental and numerical investigation on exposed RCFST column-base Joint

  • Ben, Mou (School of Civil Engineering, Architecture and Environment, Hubei University of Technology) ;
  • Xingchen, Yan (School of Civil Engineering, Qingdao University of Technology) ;
  • Qiyun, Qiao (College of Architecture and Civil Engineering, Beijing University of Technology) ;
  • Wanqiu, Zhou (School of Civil Engineering, Qingdao University of Technology)
  • 투고 : 2020.10.28
  • 심사 : 2022.12.06
  • 발행 : 2022.12.10

초록

This paper investigates the seismic performance of exposed RCFST column-base joints, in which the high-strength steel bars (USD 685) are set through the column and reinforced concrete foundation without any base plate and anchor bolts. Three specimens with different axial force ratios (n = 0, 0.25, and 0.5) were tested under cyclic loadings. Finite element analysis (FEA) models were validated in the basic indexes and failure mode. The hysteresis behavior of the exposed RCFST column-base joints was studied by the parametrical analysis including six parameters: width of column (D), width-thickness ratio (D/t), axial force ratio (n), shear-span ratio (L/D), steel tube strength (fy) and concrete strength (fc). The bending moment of the exposed RCFST column-base joint increased with D, fy and fc. But the D/t and L/D play a little effect on the bending capacity of the new column-base joint. Finally, the calculation formula is proposed to assess the bending moment capacities, and the accuracy and stability of the formula are verified.

키워드

참고문헌

  1. ABAQUS (2014), User's Manual, Version 6.14, Dassault Systemes Corp., Providence, RI, USA.
  2. AIJ (2008), Recommendations for Design and Construction of Concrete Filled Steel Tubular Structures, Architecture Institute of Japan, Tokyo, Japan.
  3. AIJ (2010), Standards for Structural Calculation of Reinforced Concrete Structures, Architecture Institute of Japan, Tokyo, Japan.
  4. AIJ (2010), Design Recommendations for Composite Constructions, Architecture Institute of Japan, Tokyo, Japan.
  5. Agheshlui, H., Goldsworthy, H., Gad, E. and Mirza, O. (2017), "Anchored blind bolted composite connection to a concrete filled steel tubular column", Steel Compos. Struct., 23(1), 115-130. https://doi.org/10.12989/scs.2017.23.1.115.
  6. Abbas, H., Siddiqui, N.A., Khateeb, B.M. and Almusallam, T.H. (2021), "Performance of new CFST square column-to-foundation connections for cyclic loads", J. Constr. Steel Res., 185(10), 106868. https://doi.org/10.1016/j.jcsr.2021.106868.
  7. Cui, Y., Wang, F.Z, Li, H. and Yamada, S.S. (2019), "Rotational behavior of exposed column bases with different base plate thickness", Steel Compos. Struct., 32(4), 497-507. https://doi.org/10.12989/scs.2019.32.4.497.
  8. Ding, F.X, Pan, Z.C, Liu, P., Huang, S.J. Luo, L. and Tao, Z. (2020), "Influence of stiffeners on the performance of blind-bolt end-plate connections to CFST columns", Steel Compos. Struct., 36(4), 447-462. https://doi.org/10.12989/scs.2020.36.4.447.
  9. Fasaee, M.A.K., Banan, M.R. and Ghazizadeh, S. (2018), "Capacity of exposed column base connections subjected to uniaxial and biaxial bending moments", J. Constr. Steel Res., 148(9), 361-370. https://doi.org/10.1016/j.jcsr.2018.05.025.
  10. GB50010 (2002), Code for Design of Concrete Structures, Ministry of Housing and Urban-Rural Development of China, Beijing, China.
  11. Han, L.H., Hou, C.C. and Xu, W. (2018), "Seismic performance of concrete-encased column base for hexagonal concrete-filled steel tube: numerical study", J. Constr. Steel Res., 149(10), 225-238. https://doi.org/10.1016/j.jcsr.2018.07.006.
  12. Han, L.H., Li, W. and Bjorhovde, R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Constr. Steel Res., 100(9), 211-228. https://doi.org/10.1016/j.jcsr.2014.04.016.
  13. Han, L.H., Yao, G.H. and Tao, Z. (2007), "Performance of concrete-filled thin-walled steel tubes under pure torsion", ThinWall. Struct., 2007, 45(1), 24-36. https://doi.org/10.1016/j.tws.2007.01.008.
  14. Hassan, M.M., Ramadan, H.M., and Abdel-Mooty M.N. (2014a), "Behavior of concentrically loaded CFT braces connections", J. Adv. Res., 5(2), 243-252. https://doi.org/10.1016/j.jare.2013.03.005.
  15. Hassan, M.M., Ramadan, H.M. and Naeem, M. (2014b), "Behavior of gusset plate-T0-CCFT connections with different configurations", Steel Compos. Struct., 17(5), 735-751. https://doi.org/10.12989/scs.2014.17.5.735.
  16. Hassan, M.M., Ramadan, H, and Abdel-Mooty M. (2012), "Experimental study of CFT bracing connections behaviour under half cyclic loading", Proceedings of the 11th International Conference on Steel Space and Composite Structures, Qingdao, China, December.
  17. Jothimani, B. and Umarani, C. (2019), "Experimental investigation on concrete filled steel tubular column to foundation connections subjected to combined axial and lateral cyclic loading", Lat. Am. J. Solids Struct., 16(6), e202. http://dx.doi.org/10.1590/1679-78255629.
  18. Kanvinde, A.M., Higgins, P., Cooke, R.J., Perez, J. and Higgins. J. (2015), "Column base connections for Hollow Steel Sections: Seismic Performance and Strength Models", J. Struct. Eng., 141(7), 04014171. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001136.
  19. Kanvinde, A.M., Jordan, S.J. and Cooke, R.J. (2013), "Exposed column base plate connections in moment frames - Simulations and behavioral insights", J. Constr. Steel Res., 84(5), 82-93. https://doi.org/10.1016/j.jcsr.2013.02.015.
  20. Kim, H.J., Ham, J., Park, K. and Hwang, W. (2017), "Numerical study of internally reinforced circular CFST column-to-foundation connection according to design variables", Steel Compos. Struct., 23(4), 445-452. https://doi.org/10.12989/scs.2017.23.4.445.
  21. Li, D. X., Uy, B., Patel, V. and Aslani, F. (2016), "Behaviour and design of demountable steel column-column connections", Steel Compos. Struct., 22(2), 429-448. https://doi.org/10.12989/scs.2016.22.2.429.
  22. Li, D.X, Wang, J., Uy, B., Farhad, A. and Vipul, P. (2018), "Analysis and design of demountable circular CFST column-base connections", Steel Compos. Struct., 28(5), 559-571. https://doi.org/10.12989/scs.2018.28.5.559.
  23. Li, X., Zhou, T., Li, J., Kuang, X.B. and Zhao, Y.W. (2019), "Seismic behavior of encased CFT column base connections", Eng. Struct., 182(3), 363-378. https://doi.org/10.1016/j.engstruct.2018.12.076.
  24. Ma, D., Han, L.H., Zhao, X. L. and Yang, W. B. (2020), "Seismic performance of the concrete-encased CFST column to RC beam joints: Analytical study", Steel Compos. Struct., 36(9), 533-551. https://doi.org/10.12989/scs.2020.36.5.533.
  25. Mou B., Li. Y. Z., and Qiao, Q. Y. (2021a), "Connection behavior of CFST column-to-beam joint implanted by steel rebars under cyclic loading", Eng. Struct., 246(11), 113036. https://doi.org/10.1016/j.engstruct.2021.113036.
  26. Mou, B., Li, X., Bai, Y.T., He, B.J. and Pater, V.I. (2018), "Numerical evaluation on shear behavior of irregular steel beam-to-CFST column connections", J. Constr. Steel Res., 148(9), 422-435. https://doi.org/10.1016/j.jcsr.2018.06.002.
  27. Mou B., Li, Y.Z., Wang, F.Y., Pan, W. and Zhao, Y. (2021b), "Flexural behavior of a novel high-strength RCFST column-to-column connection", Thin-Wall. Struct., 159(2), 107274. https://doi.org/10.1016/j.tws.2020.107274.
  28. Mou, B., Zhou, W.Q., Qiao, Q.Y., Feng, P. and Wu, C.L. (2021c), "Column base joint made with ultrahigh-strength steel bars and steel tubular: An experimental study", Eng. Struct., 228(2), 111483.https://doi.org/10.1016/j.engstruct.2020.111483.
  29. Mou, B., Liu, X. and Sun, Z.G. (2021d), "Seismic behavior of a novel beam to reinforced concrete-filled steel tube column joint" J. Constr. Steel Res., 187(12), 106931. https://doi.org/10.1016/j.jcsr.2021.106931.
  30. Mou, B., Wang, Z.A., Qiao, Q.Y. and Zhou, W.Q. (2022), "Exposed Reinforced Concrete-Filled Steel Tubular (RCFST) column-base joint with high-strength", Steel Compos. Struct., 44(1), 1-15. https://doi.org/10.12989/scs.2022.44.1.000.
  31. Pan, J.R., Huang, R.K., Xu, J., Wang, P. Wang, Z. and Chen,J. (2021), "Behavior of exposed column-base connections with four internal anchor bolts under seismic loading", Structures, 34(12), 105-119. https://doi.org/10.1016/j.istruc.2021.07.016.
  32. Qiao, Q.Y., Zhang, W.W., Mou, B. and Cao, W.L. (2019), "Seismic behavior of exposed concrete filled steel tube column bases with embedded reinforcing bars: Experimental investigation", Thin-Wall. Struct., 136(3), 367-381. https://doi.org/10.1016/j.tws.2018.12.039.
  33. Rodas, P.T., Zareian, F. and Kanvinde, A. (2016), "Hysteretic model for exposed column-base connections" J Struct Eng (N Y N Y), 142(12), 04016137. https://doi.org/10.1061/(ASCE)ST.1X.0001602.
  34. Wang, X.D., Xu, T.X., Liu, J.P., Wang,S.N. and Chen, Y.F. (2020), "Seismic performance of high-strength anchor rebar column-foundation connection for CFST". J Constr Steel Res., 173(10), 106269. https://doi.org/10.1016/j.jcsr.2020.106269.
  35. Won, D., Lee, J., Seo, J., Kang, Y.J. and Kim, S. (2020), "Hysteretic performance of column-footing joints with steel composite hollow RC columns under cyclic load", J. Build. Eng., 29(5), 101165. https://doi.org/10.1016/j.jobe.2019.101165.
  36. Xu, T.X., Zhang, S.M., Liu, J.P., Wang, X.D. and Guo, Y. (2022), "Seismic behavior of carbon fiber reinforced polymer confined concrete filled thin-walled steel tube column-foundation connection", Compos. Struct., 279(1), 114804. https://doi.org/10.1016/j.compstruct.2021.114804.
  37. Yao, C. (2016), "Shear behavior of exposed column base connections", Steel Compos. Struct., 21(6), 357-371. https://doi.org/10.12989/scs.2016.21.2.357.