DOI QR코드

DOI QR Code

Experimental and numerical analysis of the punching behavior of RC isolated footings

  • Walid, Mansour (Civil Engineering Department, Faculty of Engineering, Kafrelsheikh University) ;
  • Sabry, Fayed (Civil Engineering Department, Faculty of Engineering, Kafrelsheikh University) ;
  • Ali, Basha (Civil Engineering Department, Faculty of Engineering, Kafrelsheikh University)
  • Received : 2021.05.29
  • Accepted : 2022.11.29
  • Published : 2022.12.10

Abstract

In the current study, punching behavior of Reinforced concrete (RC) isolated footings was experimentally and numerically investigated. The experimental program consisted of four half-scale RC isolated footing specimens. The test matrix was proposed to show effect of footing area, reinforcement mesh ratio, adding internal longitudinal reinforcement bars and stirrups on the punching response of RC isolated footings. Footings area varied from 1200×1200 mm2 to 1500×1500 mm2 while the mesh reinforcement ratio was in the range from 0.36 to 0.45%. On the other hand, a 3D non-linear finite element model was constructed using ABAQUS/standard program and verified against the experimental program. The numerical results agreed well with the experimental records. The validated numerical model was used to study effect of concrete compressive strength; longitudinal reinforcement bars ratio and stirrups concentration along one or two directions on the ultimate load, deflection, stiffness and failure patterns of RC isolated footings. Results concluded that adding longitudinal reinforcement bars did not significantly affect the punching response of RC isolated footings even high steel ratios were used. On the contrary, as the stirrups ratio increased, the ultimate load of RC isolated footings increased. Footing with stirrups ratio of 1.5% had ultimate load equal to 1331 kN, 19.6% higher than the bare footing. Moreover, adding stirrups along two directions with lower ratio (0.5 and 0.7%) significantly enhanced the ultimate load of RC isolated footings compared to their counterparts with higher stirrups ratio (1.0 and 1.5%).

Keywords

Acknowledgement

The experimental tests were carried out by the reinforced concrete laboratory of the faculty of Engineering, Kafrelsheikh University, Egypt.

References

  1. Abbass, W., Khan, M.I. and Mourad, S. (2018), "Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete", Construct. Build. Mater., 168, 556-569. https://doi.org/10.1016/j.conbuildmat.2018.02.164.
  2. Abdrabbo, F., Mahmoud, Z.I. and Ebrahim, M. (2016), "Structural design of isolated column footings", Alexandria Eng. J., 55, 2665-2678. https://doi.org/10.1016/j.aej.2016.06.016.
  3. ACI Committee 318 (1999), Building Code Requirements for Structural Concrete and Commentary (ACI 318-99), Detroit (MI) American Concrete Institute.
  4. Badakhshan, E. and Noorzad, A. (2015), "Load eccentricity effects on behavior of circular footings reinforced with geogrid sheets", J. Rock Mech. Geotech. Eng., 7(6), 691-699. https://doi.org/10.1016/j.jrmge.2015.08.006.
  5. Baraghith, A.T., Mansour, W., Behiry, R.N. and Fayed, S. (2022), "Effectiveness of SHCC strips reinforced with glass fiber textile mesh layers for shear strengthening of RC beams: Experimental and numerical assessments", Construct. Build. Mater., 327, 127036. https://doi.org/10.1016/j.conbuildmat.2022.127036 .
  6. Basha, A., Fayed, S. and Mansour, W. (2020), "Flexural strengthening of RC one way solid slab with strain hardening cementitious composites (SHCC)", Adv. Concrete Construct., 9, 511-527. http://dx.doi.org/10.12989/acc.2020.9.5.511.
  7. Bashir, M.A., Furuuchi, H., Ueda, T. and Bashir, N. (2013), "Prediction of ultimate moment anchorage capacity of concrete filled steel box footing", Steel Compos. Struct., 15(6), 645-658. http://dx.doi.org/10.12989/scs.2013.15.6.645.
  8. Bonic, Z., Davidovic, N., Vacev, T., Romic, N., Zlatanovic, E. and Savic, J. (2017), "Punching behaviour of reinforced concrete footings at testing and according to Eurocode 2 and fib Model Code 2010", Int. J. Concrete Struct. Mater., 11(4), 657-676. http://dx.doi.org/10.1007/s40069-017-0213-8.
  9. Bonic, Z. and Folic, R. (2013), "Punching of column footings - comparison of experimental and calculation results", Gradevinar, 65, 887- 899. http://dx.doi.org/10.14256/JCE.916.2013.
  10. Coduto DP (2001), Foundation Design: Principles and Practices, New Jersey: Prentice-Hall.
  11. Davies, N.T., Altaner, C.M. and Apiolaza, L.A. (2016), "Elastic constants of green Pinus radiata wood", New Zealand J. Forestry Sci., 46, 1-6.
  12. ECP 203-17 (2017), Egyptian Code for Designing and Constructing Reinforced Concrete Structures, Housing and Building National Research Center, Cairo, Egypt.
  13. Eurocode 2 (2008), Commentary European Concrete Platform, ASBL, Brussels.
  14. Fayed, S., Badr el-din, A., Basha, A. and Mansour, W. (2022), "Shear behavior of RC pile cap beams strengthened using ultrahigh performance concrete reinforced with steel mesh fabric", Case Studies Construct. Mater., 17, e01532. https://doi.org/10.1016/j.cscm.2022.e01532.
  15. Fayed, S. and Mansour, W. (2020), "Evaluate the effect of steel, polypropylene and recycled plastic fibers on concrete properties", Adv. Concrete Construct., 10(4), 319-332. https://doi.org/10.12989/acc.2020.10.4.319.
  16. Federation Internationale du Beton (fib) (2010), Shear and Punching Shear in RC and FRC Elements. fib Bulletin 57.
  17. Ganganagoudar, A., Mondal, T.G. and Prakash, S.S. (2016), "Improved softened membrane model for reinforced concrete circular bridge columns under torsional loading", J. Bridge Eng., 21, 04016037. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000907.
  18. Hallgren, M. and Bjerke, M. (2002), "Non-linear finite element analyses of punching shear failure of column footings", Cement Concrete Compos., 24(6), 491-496. https://doi.org/10.1016/s0958-9465(01)00065-8.
  19. Hamoda, A., Emara, M. and Mansour, W. (2019), "Behavior of steel I-beam embedded in normal and steel fiber reinforced concrete incorporating demountable bolted connectors", Compos. Part B: Eng., 174, 106996. https://doi.org/10.1016/j.compositesb.2019.106996.
  20. Hegger, J., Ricker, M., Ulke, B. and Ziegler, M. (2007), "Investigations on punching shear behaviour of reinforced concrete footings", Eng Struct., 29, 2233-2241. https://doi.org/10.1016/j.engstruct.2006.11.012.
  21. Hegger, J., Sherif, A.G. and Ricker, M. (2006), "Experimental investigations on punching behavior of reinforced concrete footings", ACI Struct. J., 103(4), 604-613.
  22. Hibbitt, K. and Sorensen, I. (2000), ABAQUS Theory Manual, User Manual and Example Manual.
  23. Kueres, D., Schmidt, P. and Hegger, J. (2019), "Punching shear behavior of reinforced concrete footings with a varying amount of shear reinforcement", Struct. Concrete. 20, 552-563. https://doi.org/10.1002/suco.201800257.
  24. Kueres, D., Siburg, C., Herbrand, M., Classen, M. and Hegger, J. (2017), "Uniform design method for punching shear in flat slabs and column bases", Eng. Struct., 136, 149-164. https://doi.org/10.1016/j.engstruct.2016.12.064.
  25. Lee, S.S., Moon, J., Park, K.S. and Bae, K.W. (2014), "Strength of footing with punching shear preventers", Sci. World J., 474728, https://doi.org/10.1155/2014/474728.
  26. Mahiyar, H., Patel, A.N. (2000), "Analysis of angle shaped footing under eccentric loading", J. Geotech. Geoenviron. Eng., 126,(12), 1151-1156. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:12(1151).
  27. Mancilla, G.A., Rojas, A.L., Chavarria, S.L. and Elizondo, M.M. (2019), "Modeling for the strap combined footings Part I: Optimal dimensioning", Steel Compos. Struct., 30(2), 97-108. http://dx.doi.org/10.12989/scs.2019.30.2.097.
  28. Mansour, W. and Fayed, S. (2021), "Effect of interfacial surface preparation technique on bond characteristics of both NSCUHPFRC and NSC-NSC composites", Structures, 29, 147-166. https://doi.org/10.1016/j.istruc.2020.11.010.
  29. Mansour, W. and Tayeh, B. (2020), "Shear behaviour of RC beams strengthened by various ultrahigh performance fibre-reinforced concrete systems", Adv. Civil Eng., 1-18, 2139054. https://doi.org/10.1155/2020/2139054.
  30. Mansour, W. (2021), "Numerical analysis of the shear behavior of FRP-strengthened continuous RC beams having web openings", Eng. Struct., 227, 111451. https://doi.org/10.1016/j.engstruct.2020.111451.
  31. Mansour, W. and Fayed, S. (2021), "Flexural rigidity and ductility of RC beams reinforced with steel and recycled plastic fibers", Steel Compos. Struct., 41(3), 317-334. https://doi.org/10.12989/scs.2021.41.3.317.
  32. Mansour, W., Sakr, M.A., Seleemah, A.A., Tayeh, B.A., Khalifa, T. M. (2022a), "Bond behavior between concrete and prefabricated Ultra High-Performance Fiber-Reinforced Concrete (UHPFRC) plates", Struct. Eng. Mech., 81(3), 305-316. https://doi.org/10.12989/sem.2022.81.3.305.
  33. Mansour, W., Tayeh, B.A. and Tam, L.H. (2022b), "Finite element analysis of shear performance of UHPFRC-encased steel composite beams: Parametric study", Eng. Struct., 271, 114940. https://doi.org/10.1016/j.engstruct.2022.114940.
  34. Obaidat, Y.T., Heyden, S. and Dahlblom O. (2010), "The effect of CFRP and CFRP/concrete interface models when modelling retrofitted RC beams with FEM", Compos. Struct., 92, 1391-1398. https://doi.org/10.1016/j.compstruct.2009.11.008.
  35. Oskouei, A.V., Kivi, M.P., Araghi, H. and Bazli, M. (2017), "Experimental study of the punching behavior of GFRP reinforced lightweight concrete footing", Mater. Struct., 50(6). https://doi.org/10.1617/s11527-017-1127-2.
  36. Palafox, J., Rojas, A.L., Chavarria, S.L. and Elizondo, M.M. (2019), "Modeling for the strap combined footings Part II: Mathematical model for design", Steel Compos. Struct., 30(2), 109-121. http://dx.doi.org/10.12989/scs.2019.30.2.109.
  37. Park, R. (1989), "Evaluation of ductility of structures and structural assemblages from laboratory testing", Bull. New Zealand Soc. Earthq. Eng., 22, 155-166. https://doi.org/10.5459/bnzsee.22.3.155-166 .
  38. Sagaseta, J., Olmati, P., Micallef, K. and Cormie, D. (2017), "Punching shear failure in blast-loaded RC slabs and panels", Eng. Struct., 147, 177-194. https://doi.org/10.1016/j.engstruct.2017.04.051.
  39. Sakr, M.A., Sleemah, A.A., Khalifa, T.M., Mansour, W.N. (2018), "Behavior of RC beams strengthened in shear with ultra-high performance fiber reinforced concrete (UHPFRC)", In MATEC Web of Conferences, https://doi.org/10.1051/matecconf/201819909002 .
  40. Sanez, L.P. (1964), "Discussion of equation for the stress - strain curve of concrete by desayi and Krishnan", ACI J., 61, 1229-1235.
  41. Siburgm, C. and Hegger, J. (2014), "Experimental investigations on the punching behaviour of reinforced concrete footings with structural dimensions", Struct. Concrete. 15(3), 331-339. https://doi.org/10.1002/suco.201300083.
  42. Siburg, C., Ricker, M. and Hegger, J. (2014), "Punching shear design of footings: critical review of different code provisions", Struct. Concrete, 15(4), 497-508. https://doi.org/10.1002/suco.201300092.
  43. Simoes, J.T., Bujnak, J., Ruiz, M.F. and Muttoni, A. (2016), "Punching shear tests on compact footings with uniform soil pressure", Struct. Concrete, 17(4), 603-617. https://doi.org/10.1002/suco.201500175.
  44. Simoes, J.T., Faria, D.M.V., Ruiz, M.F. and Muttoni, A. (2016), "Strength of reinforced concrete footings without transverse reinforcement according to limit analysis", Eng. Struct., 112, 146-161. https://doi.org/10.1016/j.engstruct.2016.01.010.
  45. Sucharda, O., Smirakova, M., Vaskova, J., Mateckova, P., Kubosek, J. and Cajka, R. (2018), "Punching shear failure of concrete ground supported slab", Int. J. Concrete Struct. Mater., 12(1). https://doi.org/10.1186/s40069-018-0263-6.
  46. Truong, G.T., Choi, K.K. and Kim, H.S. (2017), "Punching-shear behaviors of RC-column footings with various reinforcement and strengthening details", Eng. Struct., 151, 282-296. https://doi.org/10.1016/j.engstruct.2017.08.037.
  47. Vacev, T., Bonic, Z., Prolovic, V., Davidovic, N. and Lukic, D. (2015), "Testing and finite element analysis of reinforced concrete column footings failing by punching shear", Eng. Struct., 92, 1-14. https://doi.org/10.1016/j.engstruct.2015.02.027.
  48. Wieneke, K., Kueres, D., Siburg, C. and Hegger, J. (2016), "Investigations on the punching shear behaviour of eccentrically loaded footings", Struct. Concrete, 17(6), 1047-1058. https://doi.org/10.1002/suco.201500127.
  49. Xue, H., Gilbert, B.P., Guan, H., Lu, X., Li, Y., Ma, F. and Tian, Y. (2018), "Load transfer and collapse resistance of RC flat plates under interior column removal scenario", 04018087. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002090.
  50. Zhang, W.X., Wu, H., Hwang, H.J., Zhang, J.Y., Chen, B. and Yi, W.J. (2019), "Bearing behavior of reinforced concrete column-isolated footing substructures", Eng. Struct., 200. 109744. https://doi.org/10.1016/j.engstruct.2019.109744.
  51. Zhang, Y.B. (2016), "Analysis and applied research on Pushover of RC frame structure based on single foundation", Changsha: Master dissertation of Hunan University.
  52. Zhou, H.Z., Zheng, G., He, X.P., Xu, X.M., Zhang, T.Q., Yang, X.Y. (2018), "Bearing capacity of strip footings on c-phi soils with square voids", Acta Geotech., 13(03), 747-755. https://doi.org/10.1007/s11440-018-0630-0.