DOI QR코드

DOI QR Code

Numerical comparative study on high-fidelity prediction of aerodynamic noise from centrifugal fan system

원심팬 시스템의 공력소음 고신뢰 예측을 위한 수치 비교 연구

  • 유서윤 (부산대학교 기계공학부) ;
  • 정민승 (부산대학교 기계공학부) ;
  • 송영욱 (부산대학교 기계공학부) ;
  • 정철웅 (부산대학교 기계공학부)
  • Received : 2022.10.25
  • Accepted : 2022.11.16
  • Published : 2022.11.30

Abstract

In this paper, the flow performance and aero-acoustic noise generated by the target centrifugal fan system were investigated numerically and experimentally. Also, the numerical method for Computational Aero-Acoustics were evaluated by comparing each method. To analyze the performance of the centrifugal fan experimentally, the acoustic power level was measured in the semi-anechoic chamber using microphones, and the active frequency range for the noise performance was identified and that frequency range was applied for Computational Aero-Acoustics (CAA) techniques as sampling frequency. Then, Navier-Stokes equation and the Ffowcs Williams&Hawking equations were used to analyze the flow and sound power numerically, respectively, and a virtual acoustic radiation plane was designed and used for the implementation of the sound field. The accuracy and numerical characteristics of the numerical methods were validated by comparing simulated acoustic power levels with acoustic power levels measured.

본 연구에서는 대상 원심팬 시스템에서 발생하는 유동 현상과 공력 음향 성능을 수치적/실험적으로 분석하고 다양한 수치 기법을 비교하여 평가하고자 하였다. 먼저 원심팬의 성능을 실험적으로 분석하기 위해 반무향실에서 음향 파워를 측정하였으며, 실험 결과를 통해 대상 원심팬 시스템에서 방사되는 소음 성능에 대한 유효 주파수 범위를 파악하고 이에 대한 수치 모사를 실시하였다. 수치적으로 유동 및 음향 파워를 분석하기 위해 Navier-Stokes 방정식과 Ffowcs Williams&Hawkings 방정식을 각각 유동장과 음향장의 지배방정식으로 사용하였으며, 음향장의 구현을 위해 가상의 음향 방사면을 설계하여 사용하였다. 고차 3차원 전산유체역학(Computational Fluid Dynamics, CFD)와 연계된 Hybrid-CAA 기법을 사용하여 모사한 음향 파워 레벨과 소음 실험을 통해 측정한 음향 파워 레벨의 비교를 통해 사용된 수치 기법의 정확도 및 수치적 특성을 평가하였다.

Keywords

Acknowledgement

본 과제(결과물)는 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 3단계 산학연협력 선도대학 육성사업(LINC 3.0)의 연구결과입니다.

References

  1. J. Choi, S. Y. Ryu, C. Cheong, M. K. Kim, and K. Lee, "Blade shape optimization of centrifugal fan for improving performance and reducing aerodynamic noise of clothes dryer" (in Korean), J. Acoust. Soc. Kr. 38, 321-327 (2019).
  2. M. Jung, J. Choi, S. Y. Ryu, C. Cheong, T. H. Kim, and J. Koo, "Improvement in flow and noise performance of backward centrifugal fan by redesigning airfoil geometry" (in Korean), J. Acoust. Soc. Kr. 40, 555-565 (2021).
  3. D. Shin, S. Y. Ryu, C. Cheong, T. H. Kim, and J. Jung, "Development of high-performance /low-noise centrifugal fan circulating cold air inside a household refrigerator by reduction of vortex flow" (in Korean), Trans. Korean Soc. Noise Vib. Eng. 26, 428-435 (2016). https://doi.org/10.5050/KSNVE.2016.26.4.428
  4. K. Kim, S. Y. Ryu, C. Cheong, S. Seo, C. Jang, and H. Seol, "Aerodynamic noise reduction of fan motor unit of cordless vacuum cleaner by optimal designing of splitter blades for impeller" (in Korean), J. Acoust. Soc. Kr. 39, 524-532 (2020).
  5. G. Ku, S. Y. Ryu, and C. Cheong, "Numerical investigation into cavitation flow noise of hydrofoil using quadrupole-corrected Ffowcs Williams and Hawkings equation" (in Korean), J. Acoust. Soc. Kr. 37, 263-270 (2018).
  6. M. Kim and Y. K. Lee, "A numerical study on aerodynamic noise characteristics of the tandem cylinders using DES and FW-H acoustic analogy" (in Korean), J. Korean Soc. Aeronaut. Space Sci. 46, 883-891 (2018).
  7. M. J. Lighthill, "On sound generated aerodynamically I. General theory," Proc. R. Soc. Lond. A 211, 564-587 (1952). https://doi.org/10.1098/rspa.1952.0060
  8. J. E. Ffowcs Williams and L. D. Hawkings, "Sound generation by turbulence and surfaces in arbitrary motion," Phil. Trans. R. Soc. Lond. A 264, 321-342 (1969). https://doi.org/10.1098/rsta.1969.0031
  9. W. Neise, "Noise reduction in centrifugal fans: a literature survey," J. Sound Vib. 45, 375-403 (1976). https://doi.org/10.1016/0022-460X(76)90394-1
  10. ISO 3745:2012, Acoustics - Determination of Sound PowerLevels and Sound Energy Levels of Noise Sources using Sound Pressure - Precision Method for Anechoic Rooms and Hemi-Anechoic Rooms, 2012.
  11. J. E. Bardina, P. G. Huang, and T. J. Coakley, "Turbulence modeling validation, testing, and development," National Aeronautics and Space Administration, NASA Tech. Memorandum, 1997.
  12. L. Bonfiglio and S. Brizzolara, "Effect of turbulence models on RANSE predictions of transient flow over blade sections," Proc. 4th Int. SMP, 73-87 (2015).
  13. M. Lesieur, O. Metais, and P. Comte, Large-eddy Simulations of Turbulence (Cambridge university press, Cambridge, 2005), pp. 1-219.
  14. J. W. Deardorff, "A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers," JFM. 41, 453-480 (1970). https://doi.org/10.1017/S0022112070000691