DOI QR코드

DOI QR Code

A channel parameter-based weighting method for performance improvement of underwater acoustic communication system using single vector sensor

단일 벡터센서의 수중음향 통신 시스템 성능 향상을 위한 채널 파라미터 기반 가중 방법

  • Kang-Hoon, Choi ;
  • Jee Woong, Choi (Department of Marine Sciences and Convergence Engineering & Department of Military Information Engineering, Hanyang University)
  • 최강훈 (한양대학교 해양융합과학과) ;
  • 최지웅 (한양대학교 ERICA 해양융합공학과)
  • Received : 2022.10.25
  • Accepted : 2022.11.16
  • Published : 2022.11.30

Abstract

An acoustic vector sensor can simultaneously receive vector quantities, such as particle velocity and acceleration, as well as acoustic pressure at one location, and thus it can be used as a single input multiple output receiver in underwater acoustic communication systems. On the other hand, vector signals received by a single vector sensor have different channel characteristics due to the azimuth angle between the source and receiver and the difference in propagation angle of multipath in each component, producing different communication performances. In this paper, we propose a channel parameter-based weighting method to improve the performance of an acoustic communication system using a single vector sensor. To verify the proposed method, we used communication data collected from the experiment conducted during the KOREX-17 (Korea Reverberation Experiment). For communication demodulation, block-based time reversal technique which is robust against time-varying channels were utilized. Finally, the communication results showed that the effectiveness of the channel parameter-based weighting method for the underwater communication system using a single vector sensor was verified.

음향 벡터센서는 한 위치에서 음향압력 뿐만 아니라 입자속도 및 가속도와 같은 벡터량을 동시에 수신할 수 있기 때문에 수중음향 통신 시스템의 단일입력다중출력 수신기로써 사용가능하다. 한편, 단일 벡터센서로 수신되는 벡터 신호는 송·수신기 간 방위각과 다중경로 각 요소의 전파각도에 따라 서로 다른 채널 특성을 갖기 때문에 다른 통신성능을 야기한다. 본 논문에서는 단일 벡터센서를 이용한 수중음향 통신 시스템의 성능 향상을 위한 채널 파라미터 기반 가중 방법을 제안한다. 제안 방법의 검증을 위해 Korea Reverberation Experiment(KOREX-17) 중에 수행된 통신실험 데이터를 사용하였다. 음향 송신기는 수신기로부터 멀어지면서 통신신호를 전송했으며 단일 벡터 수신기는 음향압력 신호와 x, y, 및 z 가속도 신호를 측정했다. 수신된 가속도 신호는 압력등가 입자속도 신호로 변환되어 음향압력 신호와 함께 다중채널 통신 시스템의 입력값으로 사용되었다. 통신 복조를 위해 시변 채널에 강인한 블록기반 시역전 기법이 활용되었으며, 통신 결과로부터 단일 벡터센서를 이용한 수중음향 통신 시스템에 대한 채널 파라미터 기반 가중 방법의 유효성이 입증되었다.

Keywords

Acknowledgement

본 연구는 국방과학연구소(UD200010DD)의 지원에 의해 수행되었습니다.

References

  1. H. C. Song, "Time reversal communication with a mobile source," J. Acoust. Soc. Am. 134, 2623-2626 (2013). https://doi.org/10.1121/1.4819115
  2. H. C. Song, "Peer-reviewed technical communication: an overview of underwater time-reversal communication," IEEE J. Ocean. Eng. 41, 644-655 (2016). https://doi.org/10.1109/JOE.2015.2461712
  3. H. C. Song, W. S. Hodgkiss, W. A. Kuperman, W. J. Higley, K. Raghukumar, T. Akal, and M. Stevenson, "Spatial diversity in passive time reversal communications," J. Acoust. Soc. Am. 120, 2067-2076 (2006). https://doi.org/10.1121/1.2338286
  4. T. C. Yang, "Temporal resolutions of time-reversal and passive-phase conjugation for underwater acoustic communications," IEEE J. Ocean. Eng. 28, 229-245 (2003). https://doi.org/10.1109/JOE.2003.811895
  5. T. C. Yang, "Correlation-based decision-feedback equalizer for underwater acoustic communications," IEEE J. Ocean. Eng. 30, 865-880 (2005). https://doi.org/10.1109/JOE.2005.862126
  6. M. Stojanovic, "Retrofocusing techniques for high rate acoustic communications," J. Acoust. Soc. Am. 117, 1173-1185 (2005). https://doi.org/10.1121/1.1856411
  7. A. Nehorai and E. Paldi, "Acoustic vector-sensor array processing," IEEE Trans. Signal Process. 42, 2481-2491 (1994). https://doi.org/10.1109/78.317869
  8. A. Song, A. Abdi, M. Badiey, and P. Hursky, "Experimental demonstration of underwater acoustic communication by vector sensors," IEEE J. Ocean. Eng. 36, 454-461 (2011). https://doi.org/10.1109/JOE.2011.2133050
  9. C. Wang, J. Yin, D. Huang, and A. Zielinski, "Experimental demonstration of differential OFDM underwater acoustic communication with acoustic vector sensor," Appl. Acoust. 91, 1-5 (2015). https://doi.org/10.1016/j.apacoust.2014.11.013
  10. S. Kim, H. Kim, S. Jung, and J. W. Choi, "Time reversal communication using vertical particle velocity and pressure signals in shallow water," Ad Hoc Netw. 89, 161-169 (2019). https://doi.org/10.1016/j.adhoc.2019.03.008
  11. F. A. Bozzi and S. M. Jesus, "Joint vector sensor beam steering and passive time reversal for underwater acoustic communications," IEEE Access, 10, 66952-66960 (2022). https://doi.org/10.1109/ACCESS.2022.3183348
  12. M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse, and M. Franceschetti, "Stochastic geometry and random graphs for the analysis and design of wireless networks," IEEE JSAC. 27, 1029-1046 (2009).
  13. T. S. Rappaport, Wireless Communications : Principles and Practice (Prentice Hall, Upper Saddle River, 2002), pp.177-248.
  14. H. C. Song, W. A. Kuperman, and W. S. Hodgkiss, "Basin-scale time reversal communications," J. Acoust. Soc. Am. 125, 212-217 (2009). https://doi.org/10.1121/1.3021435
  15. A. Song, M. Badiey, H. C. Song, W. S. Hodgkiss, M. Porter, and K. Group "Impact of ocean variability on coherent underwater acoustic communications during Kauai experiment (KauaiEx)," J. Acoust. Soc. Am. 123, 856-865 (2008). https://doi.org/10.1121/1.2828055
  16. H. C. Song, W. S. Hodgkiss, and P. A. van Walree, "Phase-coherent communications without explicit phase tracking," J. Acoust. Soc. Am. 128, 969-972 (2010). https://doi.org/10.1121/1.3466860
  17. H. C. Song, "Time reversal communications in a timevarying sparse channel," J. Acoust. Soc. Am. 130, EL161-EL166 (2011). https://doi.org/10.1121/1.3629138
  18. D. R. Dall'Osto, P. H. Dahl, and J. W. Choi, "Properties of the acoustic intensity vector field in a shallow water waveguide," J. Acoust. Soc. Am. 131, 2023-2035 (2012). https://doi.org/10.1121/1.3682063
  19. S. F Cotter and B. D. Rao, "Sparse channel estimation via matching pursuit with application to equalization," IEEE Trans. Commun. 50, 374-377 (2002). https://doi.org/10.1109/26.990897
  20. J. Proakis and M. Salehi, Digital Communications (McGraw-Hill, New York, 2008), pp. 290-327.
  21. B. T. Hefner, D. Tang, J. W. Choi, and T. Shim, "Rocky outcrops as clutter in mid-frequency reverberation measurements," J. Acoust. Soc. Am. 144, 1687 (2018).
  22. D. Tang, B. T. Hefner, and T. Shim, "Assessment of the temporal and spatial dependence of reverberation mechanisms for KOREX-17," J. Acoust. Soc. Am. 144, 1686 (2018).
  23. T. Shim, B. T. Hefner, S. -U. Son, Y. Na, and D. Tang, "Oceanographic effects on mid-frequency acoustics during KOREX-17," J. Acoust. Soc. Am. 144, 1687 (2018).
  24. M. B. Porter and H. P. Bucker, "Gaussian beam tracing for computing ocean acoustic fields," J. Acoust. Soc. Am. 82, 1349-1359 (1987). https://doi.org/10.1121/1.395269