DOI QR코드

DOI QR Code

A geometrically nonlinear stability analysis of sandwich annular plates with cellular core

  • Ridha A., Ahmed (Al-Mustansiriah University, Engineering Collage) ;
  • Kareem Mohsen, Raheef (Ashur University College) ;
  • Nadhim M., Faleh (Al-Mustansiriah University, Engineering Collage) ;
  • Raad M., Fenjan (Al-Mustansiriah University, Engineering Collage)
  • 투고 : 2021.07.10
  • 심사 : 2022.11.13
  • 발행 : 2022.12.10

초록

A geometrically nonlinear stability analysis of sandwich annular plates with cellular core and particle-reinforced composite layers has been performed in the present research. The particles are powders of graphene oxide (GOP) which act as nanoscale filler of epoxy matrix. To this regard, Halpin-Tsai micromechanical scheme has been used to define the material properties of the layers. A square shaped core has been considered for which the material properties have been defined based on the relative density concept. Large deflection theory of thin shells has been selected to develop the complete formulation of sandwich plate. The geometrically nonlinear stability analysis of sandwich annular plates has been carried out by indicating that the buckling load is dependent on particle amount, thickness of layer and core relative density.

키워드

Acknowledgement

The authors would like to thank Mustansiriyah university (www.uomustansiriyah.edu.iq) and Ashur university, Baghdad-Iraq, for their support in the present work.

References

  1. Ahmed, R.A., Al-Toki, M.H., Faleh, N.M. and Fenjan, R.M. (2022), "Nonlinear stability of higher-order porous metal foam curved panels with stiffeners", Transport Porous Media, 142(1), 249-264. https://doi.org/10.1007/s11242-021-01691-2.
  2. Afshari, B.M., Mirjavadi, S.S. and Barati, M.R. (2022). "Investigating nonlinear static behavior of hyperelastic plates using three-parameter hyperelastic model", Adv. Concrete Construct., 13(5), 377-384. https://doi.org/10.12989/acc.2022.13.5.377.
  3. Ahankari, S.S and Kar, K.K. (2010), "Hysteresis measurements and dynamic mechanical characterization of functionally graded natural rubber-carbon black composites", Polymer Eng. Sci., 50(5), 871-877. https://doi.org/10.1002/pen.21601.
  4. Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monit. Maint., 6(2), 147-159. https://doi.org/10.12989/smm.2019.6.2.147.
  5. Al-Toki, M.H., Ali, H.A., Ahmed, R.A., Faleh, N.M. and Fenjan, R.M. (2022), "A numerical study on vibration behavior of fiber-reinforced composite panels in thermal environments", Struct. Eng. Mech., 82(6), 691-699. https://doi.org/10.12989/sem.2022.82.6.691.
  6. Barati, M.R. and Shahverdi, H. (2017a), "Dynamic modeling and vibration analysis of double-layered multi-phase porous nanocrystalline silicon nanoplate systems", Europ. J. Mech.-A/Solids, 66, 256-268. https://doi.org/10.1016/j.euromechsol.2017.07.010.
  7. Barati, M.R. and Shahverdi, H. (2017b), "Frequency analysis of porous nano-mechanical mass sensors made of multi-phase nanocrystalline silicon materials", Mater. Res. Express, 4(7), 075019. https://doi.org/10.1088/2053-1591/aa7ac2.
  8. Barati, M.R. and Shahverdi, H. (2022), "Vibration frequencies of meta-material plates based on the numerical calibration of shape factor for various cell patterns", Waves Random Complex Media, 1-19. https://doi.org/10.1080/17455030.2022.2046300.
  9. Chikh, A., Bakora, A., Heireche, H., Houari, M.S.A., Tounsi, A. and Bedia, E.A. (2016), "Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory", Struct. Eng. Mech., 57(4), 617-639. https://doi.org/10.12989/sem.2016.57.4.617.
  10. Du, H., Gao, H.J. and Dai Pang, S. (2016), "Improvement in concrete resistance against water and chloride ingress by adding graphene nanoplatelet", Cement Concrete Res., 83, 114-123. https://doi.org/10.1016/j.cemconres.2016.02.005.
  11. Esawi, A.M.K., Morsi, K., Sayed, A., Taher, M. and Lanka, S. (2011), "The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites", Compos. Part A: Appl. Sci. Manufact., 42(3), 234-243. https://doi.org/10.1016/j.compositesa.2010.11.008
  12. Fang, M., Wang, K., Lu, H., Yang, Y. and Nutt, S. (2009), "Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites", J. Mater. Chemistry, 19(38), 7098-7105. https://doi.org/10.1039/B908220D.
  13. Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities", Coup. Syst. Mech., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247.
  14. Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs)", Eng. Struc., 140, 110-119. https://doi.org/10.1016/j.engstruct.2017.02.052.
  15. Gojny, F.H., Wichmann, M.H.G., Kopke, U., Fiedler, B. and Schulte, K. (2004), "Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content", Compos. Sci. Technol., 64(15), 2363-2371. https://doi.org/10.1016/j.compscitech.2004.04.002.
  16. Guan, H., Huang, S., Ding, J., Tian, F., Xu, Q. and Zhao, J. (2020), "Chemical environment and magnetic moment effects on point defect formations in CoCrNi-based concentrated solid-solution alloys", Acta Materialia, 187, 122-134. https://doi.org/10.1016/j.actamat.2020.01.044.
  17. Guenaneche, B., Benyoucef, S., Tounsi, A. and Adda Bedia, E.A. (2019), "Improved analytical method for adhesive stresses in plated beam: Effect of shear deformation", Adv. Concrete Construct., 7(3), 151-166. https://doi.org/10.12989/acc.2019.7.3.151.
  18. Hao, P., Wang, B., Du, K., Li, G., Tian, K., Sun, Y. and Ma, Y. (2016), "Imperfection-insensitive design of stiffened conical shells based on equivalent multiple perturbation load approach", Compos. Struct., 136, 405-413. https://doi.org/10.1016/j.compstruct.2015.10.022.
  19. Hao, R.B., Lu, Z.Q., Ding, H. and Chen, L.Q. (2022), "A nonlinear vibration isolator supported on a flexible plate: analysis and experiment", Nonlinear Dyn., 108(2), 941-958. https://doi.org/10.1007/s11071-022-07243-7.
  20. King, J.A., Klimek, D.R., Miskioglu, I. and Odegard, G.M. (2013), "Mechanical properties of graphene nanoplatelet/epoxy composites", J. Appl. Polymer Sci., 128(6), 4217-4223. https://doi.org/10.1002/app.38645.
  21. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
  22. Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concrete, 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501.
  23. Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041.
  24. Lin, F., Yang, C., Zeng, Q.H and Xiang, Y. (2018), "Morphological and mechanical properties of graphene-reinforced PMMA nanocomposites using a multiscale analysis", Comput. Mater. Sci., 150, 107-120. https://doi.org/10.1016/j.commatsci.2018.03.048
  25. Liu, W., Huang, F., Liao, Y., Zhang, J., Ren, G., Zhuang, Z. and Wang, C. (2008), "Treatment of CrVI-Containing Mg (OH) 2 Nanowaste", Angewandte Chemie, 120(30), 5701-5704. https://doi.org/10.1002/ange.200800172.
  26. Metwally, I.M. (2014), "Three-dimensional finite element analysis of reinforced concrete slabs strengthened with epoxy-bonded steel plates", Adv. Concrete Construct., 2(2), 091. https://doi.org/10.12989/acc.2014.2.2.091.
  27. Mohammed, A., Sanjayan, J.G., Nazari, A. and Al-Saadi, N.T.K. (2017), "Effects of graphene oxide in enhancing the performance of concrete exposed to high-temperature", Australian J. Civil Eng., 15(1), 61-71. https://doi.org/10.1080/14488353.2017.1372849.
  28. Nieto, A., Bisht, A., Lahiri, D., Zhang, C. and Agarwal, A. (2017), "Graphene reinforced metal and ceramic matrix composites: A review", Int. Mater. Rev., 62(5), 241-302. https://doi.org/10.1080/09506608.2016.1219481
  29. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano, 3(12), 3884-3890. https://doi.org/10.1021/nn9010472.
  30. Rezaiee-Pajand, M., Masoodi, A.R. and Mokhtari, M. (2018), "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Comput. Des., 3(2), 165-190. https://doi.org/10.12989/acd.2018.3.2.165.
  31. Shamsaei, E., de Souza, F.B., Yao, X., Benhelal, E., Akbari, A. and Duan, W. (2018), "Graphene-based nanosheets for stronger and more durable concrete: A review", Construct. Build. Mater., 183, 642-660. https://doi.org/10.1016/j.conbuildmat.2018.06.201.
  32. Shen, H.S., Xiang, Y., Lin, F. and Hui, D. (2017), "Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments", Compos. Part B: Eng., 119, 67-78. https://doi.org/10.1016/j.compositesb.2017.03.020.
  33. Song, M., Kitipornchai, S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070.
  34. Wang, L. and Su, R.K.L. (2013), "A unified design procedure for preloaded rectangular RC columns strengthened with post-compressed plates", Adv. Concrete Construct., 1(2), 163. https://doi.org/10.12989/acc.2013.1.2.163.
  35. Wang, B., Zhu, S., Hao, P., Bi, X., Du, K., Chen, B. and Chao, Y.J. (2018), "Buckling of quasi-perfect cylindrical shell under axial compression: A combined experimental and numerical investigation", Int. J. Solids Struct., 130, 232-247. https://doi.org/10.1016/j.ijsolstr.2017.09.029.
  36. Wu, Y., Zhao, Y., Han, X., Jiang, G., Shi, J., Liu, P. and Yamada, Y. (2021), "Ultra-fast growth of cuprate superconducting films: dual-phase liquid assisted epitaxy and strong flux pinning", Mater. Today Phys., 18, 100400. https://doi.org/10.1016/j.mtphys.2021.100400.
  37. Xiong, Q.M., Chen, Z., Huang, J.T., Zhang, M., Song, H., Hou, X. F. and Feng, Z.J. (2020), "Preparation, structure and mechanical properties of Sialon ceramics by transition metal-catalyzed nitriding reaction", Rare Metals, 39(5), 589-596. https://doi.org/10.1007/s12598-020-01385-6.
  38. Yang, B., Yang, J. and Kitipornchai, S. (2017), "Thermoelastic analysis of functionally graded graphene reinforced rectangular plates based on 3D elasticity", Meccanica, 52(10), 2275-2292. https://doi.org/10.1007/s11012-016-0579-8.
  39. Zaheer, M.M., Jafri, M.S. and Sharma, R. (2019), "Effect of diameter of MWCNT reinforcements on the mechanical properties of cement composites", Adv. Concrete Construct., 8(3), 207-215. https://doi.org/10.12989/acc.2019.8.3.207.
  40. Zhang, L.W. (2017), "On the study of the effect of in-plane forces on the frequency parameters of CNT-reinforced composite skew plates", Compos. Struct., 160, 824-837. https://doi.org/10.1016/j.compstruct.2016.10.116.
  41. Zhang, Z., Li, Y., Wu, H., Zhang, H., Wu, H., Jiang, S. and Chai, G. (2020), "Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the first-order shear deformation theory", Mech. Adv. Mater. Struct., 27, 3-11. https://doi.org/10.1080/15376494.2018.1444216.