DOI QR코드

DOI QR Code

Buckling of 2D FG Porous unified shear plates resting on elastic foundation based on neutral axis

  • Rabab, Shanab (Department of Engineering Mathematics, Faculty of Engineering, Zagazig University) ;
  • Salwa, Mohamed (Department of Engineering Mathematics, Faculty of Engineering, Zagazig University) ;
  • Mohammed Y., Tharwan (Mechanical Engineering Department, Faculty of Engineering, Jazan University) ;
  • Amr E., Assie (Mechanical Engineering Department, Faculty of Engineering, Jazan University) ;
  • Mohamed A., Eltaher (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University)
  • Received : 2022.05.18
  • Accepted : 2022.12.06
  • Published : 2022.12.10

Abstract

The critical buckling loads and buckling modes of bi-directional functionally graded porous unified higher order shear plate with elastic foundation are investigated. A mathematical model based on neutral axis rather than midplane is developed in comprehensive way for the first time in this article. The material constituents form ceramic and metal are graded through thickness and axial direction by the power function distribution. The voids and cavities inside the material are proposed by three different porosity models through the thickness of plate. The constitutive parameters and force resultants are evaluated relative to the neutral axis. Unified higher order shear plate theories are used to satisfy the zero-shear strain/stress at the top and bottom surfaces. The governing equilibrium equations of bi-directional functionally graded porous unified plate (BDFGPUP) are derived by Hamilton's principle. The equilibrium equations in the form of coupled variable coefficients partial differential equations is solved by using numerical differential integral quadrature method (DIQM). The validation of the present model is presented and compared with previous works for bucking. Deviation in buckling loads for both mid-plane and neutral plane are developed and discussed. The numerical results prove that the shear functions, distribution indices, boundary conditions, elastic foundation and porosity type have significant influence on buckling stability of BDFGPUP. The current mathematical model may be used in design and analysis of BDFGPU used in nuclear, mechanical, aerospace, and naval application.

Keywords

References

  1. Abdollahi, M., Saidi, A.R. and Bahaadini, R. (2021), "Aeroelastic analysis of symmetric and non-symmetric trapezoidal honeycomb sandwich plates with FG porous face sheets", Aeros. Sci. Technol., 119, 107211. https://doi.org/10.1016/j.ast.2021.107211
  2. Abo-Bakr, H.M., Abo-Bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Weight optimization of axially functionally graded microbeams under buckling and vibration behaviors", Mech. Based Des. Struct. Machines, 1-22. https://doi.org/10.1080/15397734.2020.1838298.
  3. Abo-Bakr, H.M., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2021a), "Multi-objective shape optimization for axially functionally graded microbeams", Compos. Struct., 258, 113370. https://doi.org/10.1016/j.compstruct.2020.113370.
  4. Abo-Bakr, R.M., Abo-Bakr, H.M., Mohamed, S.A. and Eltaher, M.A. (2021b), "Optimal weight for buckling of FG beam under variable axial load using Pareto optimality", Compos. Struct., 258, 113193. https://doi.org/10.1016/j.compstruct.2020.113193.
  5. Abo-bakr, R.M., Shanab, R.A. and Attia, M.A. (2021c), "Multi-objective optimization for lightweight design of bi-directional functionally graded beams for maximum frequency and buckling load", Compos. Struct., 278, 114691. https://doi.org/10.1016/j.compstruct.2021.114691.
  6. Akbas, S.D., Bashiri, A.H., Assie, A.E. and Eltaher, M.A. (2021), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 27(13-14), 1644-1655. https://doi.org/10.1177/1077546320947302.
  7. Akbas, S.D., Fageehi, Y.A., Assie, A.E. and Eltaher, M.A. (2022), "Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load", Eng. Comput., 38, 365-377. https://doi.org/10.1007/s00366-020-01070-3.
  8. Assie, A.E., Mohamed, S.M., Shanab, R.A., Abo-bakr, R.M. and Eltaher, M.A. (2023), "Static buckling of 2D FG porous plates resting on elastic foundation based on unified shear theories", J. Appl. Comput. Mech., 9(1), 239-258. http://doi.org/10.22055/jacm.2022.41265.3723.
  9. Attia, M.A. and Shanab, R.A. (2021), "Vibration characteristics of two-dimensional FGM nanobeams with couple stress and surface energy under general boundary conditions", Aeros. Sci. Technol., 111, 106552. https://doi.org/10.1016/j.ast.2021.106552.
  10. Attia, M.A. and Shanab, R.A. (2022), "On the dynamic response of bi-directional functionally graded nanobeams under moving harmonic load accounting for surface effect", Acta Mechanica, 233(8), 3291-3317. https://doi.org/10.1007/s00707-022-03243-1.
  11. Babaei, M., Asemi, K. and Kiarasi, F. (2020), "Static response and free-vibration analysis of a functionally graded annular elliptical sector plate made of saturated porous material based on 3D finite element method", Mech. Based Des. Struct. Machines, 1-25. https://doi.org/10.1080/15397734.2020.1864401.
  12. Bellman, R., Kashef, B.G. and Casti, J. (1972), "Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations", J. Comput. Phys., 10(1), 40-52. https://doi.org/10.1016/0021-9991(72)90089-7.
  13. Bui, T.Q., Van Do, T., Ton, L.H.T., Doan, D.H., Tanaka, S., Pham, D.T. and Hirose, S. (2016), "On the high temperature mechanical behaviors analysis of heated functionally graded plates using FEM and a new third-order shear deformation plate theory", Compos. Part B: Eng., 92, 218-241. http://dx.doi.org/10.1016/j.compositesb.2016.02.048.
  14. Chen, X., Chen, L., Huang, S., Li, M. and Li, X. (2021), "Nonlinear forced vibration of in-plane bi-directional functionally graded materials rectangular plate with global and localized geometrical imperfections", Appl. Mathem. Modelling, 93, 443-466.https://doi.org/10.1016/j.apm.2020.12.033.
  15. Chinnapandi, L.B.M., Pitchaimani, J. and Eltaher, M.A. (2022), "Vibro-acoustics of functionally graded porous beams subjected to thermo-mechanical loads", Steel Compos. Struct., 44(6), 815-829. https://doi.org/10.12989/scs.2022.44.6.829.
  16. Chu, L., Dui, G. and Zheng, Y. (2020), "Thermally induced nonlinear dynamic analysis of temperature-dependent functionally graded flexoelectric nanobeams based on nonlocal simplified strain gradient elasticity theory", Europ. J. Mech.-A/Solids, 82, 103999. https://doi.org/10.1016/j.euromechsol.2020.103999.
  17. Coskun, S., Kim, J. and Toutanji, H. (2019), "Bending, free vibration, and buckling analysis of functionally graded porous micro-plates using a general third-order plate theory", J. Compos. Sci., 3(1), 15. https://doi.org/10.3390/jcs3010015.
  18. Daikh, A.A., Belarbi, M.O., Ahmed, D., Houari, M.S.A., Avcar, M., Tounsi, A. and Eltaher, M.A. (2022), "Static analysis of functionally graded plate structures resting on variable elastic foundation under various boundary conditions", Acta Mechanica, 1-32. https://doi.org/10.1007/s00707-022-03405-1.
  19. Daikh, A.A., Houari, M.S.A. and Eltaher, M.A. (2021b), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 262, 113347. https://doi.org/10.1016/j.compstruct.2020.113347.
  20. Daikh, A.A., Houari, M.S.A., Belarbi, M.O., Mohamed, S.A. and Eltaher, M.A. (2021a), "Static and dynamic stability responses of multilayer functionally graded carbon nanotubes reinforced composite nanoplates via quasi 3D nonlocal strain gradient theory", Defence Technol., http://dx.doi.org/10.1016/j.dt.2021.09.011.
  21. Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. http://dx.doi.org/10.12989/sem.2021.80.1.063.
  22. Duc, D.H., Thom, D.V., Cong, P.H., Minh, P.V. and Nguyen, N.X. (2022), "Vibration and static buckling behavior of variable thickness flexoelectric nanoplates", Mech. Based Des. Struct. Machines, 1-29. https://doi.org/10.1080/15397734.2022.2088558.
  23. Eltaher, M.A., Abdelrahman, A.A., Al-Nabawy, A., Khater, M. and Mansour, A. (2014), "Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position", Appl. Mathem. Comput., 235, 512-529. https://doi.org/10.1016/j.amc.2014.03.028.
  24. Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039.
  25. Eltaher, M.A., Mohamed, S.C. and Melaibari, A.A. (2020), "Static stability of a unified composite beams under varying axial loads", Thin-Wall. Struct., 147, 106488. https://doi.org/10.1016/j.tws.2019.106488.
  26. Esen, I., Abdelrhmaan, A.A. and Eltaher, M.A. (2022a), "Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields", Eng. Comput., 38(4), 3463-3482. https://doi.org/10.1007/s00366-021-01389-5.
  27. Esen, I., Alazwari, M.A., Eltaher, M.A. and Abdelrahman, A.A. (2022b), "Dynamic response of FG porous nanobeams subjected thermal and magnetic fields under moving load", Steel Compos. Struct., 42(6), 805-826. https://doi.org/10.12989/scs.2022.42.6.805.
  28. Fernando, D., Wang, C.M. and Chowdhury, A.R. (2018), "Vibration of laminated-beams based on reference-plane formulation: Effect of end supports at different heights of the beam", Eng. Struct., 159, 245-251. https://doi.org/10.1016/j.engstruct.2018.01.004.
  29. Gautam, M and Chaturvedi, M. (2023), "Thermal buckling analysis of tri-directional functionally graded material plate", In Recent Advances in Materials Processing and Characterization 183-190. Springer, Singapore.
  30. Hamed, M.A., Abo-Bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. Comput., 36(4), 1929-1946. https://doi.org/10.1007/s00366-020-01023-w.
  31. Hendi, A.A., Eltaher, M.A., Mohamed, S.A., Attia, M.A. and Abdalla, A.W. (2021), "Nonlinear thermal vibration of pre/post-buckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory", Steel Compos. Struct., 41(6), 787-802. https://doi.org/10.12989/scs.2021.41.6.787.
  32. Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multilayered laminated composite structures model with transverse shear stress continuity", Int. J. Solids Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9.
  33. Karamanli, A. and Aydogdu, M. (2020), "Vibration of functionally graded shear and normal deformable porous microplates via finite element method", Compos. Struct., 237, 111934. https://doi.org/10.1016/j.compstruct.2020.111934.
  34. Larbi, L.O., Kaci, A., Houari, M.S.A. and Tounsi, A. (2013), "An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams", Mech. Based Des. Struct. Machines, 41(4), 421-433. https://doi.org/10.1080/15397734.2013.763713.
  35. Li, M., Soares, C.G. and Yan, R. (2021), "Free vibration analysis of FGM plates on Winkler/Pasternak/Kerr foundation by using a simple quasi-3D HSDT", Compos. Struct., 264, 113643. https://doi.org/10.1016/j.compstruct.2021.113643.
  36. Li, S., Zheng, S. and Chen, D. (2020), "Porosity-dependent isogeometric analysis of bi-directional functionally graded plates", Thin-Wall. Struct., 156, 106999. https://doi.org/10.1016/j.tws.2020.106999.
  37. Lieu, Q.X., Lee, D., Kang, J. and Lee, J. (2019), "NURBS-based modeling and analysis for free vibration and buckling problems of in-plane bi-directional functionally graded plates", Mech. Adv. Mater. Struct., 26(12), 1064-1080. https://doi.org/10.1080/15376494.2018.1430273.
  38. Mohamed, S.A. (2020), "A fractional differential quadrature method for fractional differential equations and fractional eigenvalue problems", Mathem. Meth. Appl. Sci., https://doi.org/10.1002/mma.6753
  39. Mohamed, S.A., Mohamed, N.A. and Abo-Hashem, S.I. (2021), "A novel differential-integral quadrature method for the solution of nonlinear integro-differential equations", Mathem. Meth. Appl. Sci., 44(18), 13945-13967. https://doi.org/10.1002/mma.7667.
  40. Nguyen, H.N., Hong, T.T., Vinh, P.V., Quang, N.D. and Thom, D.V. (2019), A refined simple first-order shear deformation theory for static bending and free vibration analysis of advanced composite plates", Materials, 12(15), 2385. https://doi.org/10.3390/ma12152385.
  41. Pham, Q.H., Nguyen, P.C., Tran, V.K. and Nguyen-Thoi, T. (2021a), "Isogeometric analysis for free vibration of bidirectional functionally graded plates in the fluid medium", Defence Technol., https://doi.org/10.1016/j.dt.2021.09.006.
  42. Pham, Q.H., Tran, V.K., Tran, T.T., Nguyen-Thoi, T. and Nguyen, P.C. (2021b), "A nonlocal quasi-3D theory for thermal free vibration analysis of functionally graded material nanoplates resting on elastic foundation", Case Studies Thermal Eng., 26, 101170. https://doi.org/10.1016/j.csite.2021.101170.
  43. Radice, J.J. (2012), "On the effect of local boundary condition details on the natural frequencies of simply-supported beams: Eccentric pin supports", Mech. Res. Commun., 39(1), 1-8. https://doi.org/10.1016/j.mechrescom.2011.08.007.
  44. Raissi, H. (2020), "Stress analysis in adhesive layers of a five-layer circular sandwich plate subjected to temperature gradient based on layerwise theory", Mech. Based Des. Struct. Machines, 1-27. https://doi.org/10.1080/15397734.2020.1776619.
  45. Ramu, I. and Mohanty, S.C. (2014), "Buckling analysis of rectangular functionally graded material plates under uniaxial and biaxial compression load", Procedia Eng., 86, 748-757. https://doi.org/10.1016/j.proeng.2014.11.094.
  46. Reddy, J. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.
  47. Reddy, J.N. (1979), "Free vibration of antisymmetric, angle-ply laminated plates including transverse shear deformation by the finite element method", J. Sound Vib., 66(4), 565-576. https://doi.org/10.1016/0022-460X(79)90700-4.
  48. Sah, S.K. and Ghosh, A. (2022), "Influence of porosity distribution on free vibration and buckling analysis of multidirectional functionally graded sandwich plates", Compos. Struct., 279, 114795. https://doi.org/10.1016/j.compstruct.2021.114795.
  49. Shahverdi, H. and Barati, M.R. (2017), "Vibration analysis of porous functionally graded nanoplates", Int. J. Eng. Sci., 120, 82-99. http://dx.doi.org/10.1016/j.ijengsci.2017.06.008.
  50. Shanab, R.A. and Attia, M.A. (2021), "On bending, buckling and free vibration analysis of 2D-FG tapered Timoshenko nanobeams based on modified couple stress and surface energy theories", Waves Random Complex Media, 1-47. https://doi.org/10.1080/17455030.2021.1884770.
  51. Shanab, R.A. and Attia, M.A. (2022), "Semi-analytical solutions for static and dynamic responses of bi-directional functionally graded nonuniform nanobeams with surface energy effect", Eng. Comput., 38, 2269-2312. https://doi.org/10.1007/s00366-020-01205-6.
  52. She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Thermal Stresses, 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
  53. She, G.L., Ding, H.X. and Zhang, Y.W. (2022), "Wave propagation in a FG circular plate via the physical neutral surface concept", Struct. Eng. Mech., 82(2), 225-232. https://doi.org/10.12989/sem.2022.82.2.225.
  54. She, G.L., Liu, H.B. and Karami, B. (2021a), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
  55. Shu, C. (2012). Differential Quadrature and Its Application in Engineering. Springer Science & Business Media.
  56. Taibi, F.Z., Benyoucef, S., Tounsi, A., Bachir Bouiadjra, R., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "A simple shear deformation theory for thermo-mechanical behaviour of functionally graded sandwich plates on elastic foundations", J. Sandwich Struct. Mater., (2), 99-129. https://doi.org/10.1177/1099636214554904
  57. Thai, H.T. and Kim, S.E. (2012), "Levy-type solution for free vibration analysis of orthotropic plates based on two variable refined plate theory", Appl. Mathem. Modelling, 36(8), 3870-3882. https://doi.org/10.1016/j.apm.2011.11.003.
  58. Thai, L.M., Luat, D.T., Phung, V.B., Minh, P.V. and Thom, D.V. (2022), "Finite element modeling of mechanical behaviors of piezoelectric nanoplates with flexoelectric effects", Archive Appl. Mech., 92(1), 163-182. https://doi.org/10.1007/s00419-021-02048-3.
  59. Touratier, M. (1991). "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
  60. Tran, T.T., Nguyen, P.C. and Pham, Q.H. (2021), "Vibration analysis of FGM plates in thermal environment resting on elastic foundation using ES-MITC3 element and prediction of ANN", Case Studies Thermal Eng., 24, 100852. https://doi.org/10.1016/j.csite.2021.100852.
  61. Van Do, T., Doan, D.H., Duc, N.D. and Bui, T.Q. (2017), "Phase-field thermal buckling analysis for cracked functionally graded composite plates considering neutral surface", Compos. Struct., 182, 542-548. https://doi.org/10.1016/j.compstruct.2017.09.059.
  62. Van Do, T., Hong Doan, D., Chi Tho, N. and Dinh Duc, N. (2022), "Thermal buckling analysis of cracked functionally graded plates", Int. J. Struct. Stab. Dyn., 22(08), 2250089. http://doi.org/10.1142/S0219455422500894.
  63. Van Do, T., Nguyen, D.K., Duc, N.D., Doan, D.H. and Bui, T.Q. (2017a), "Analysis of bi-directional functionally graded plates by FEM and a new third-order shear deformation plate theory", Thin-Wall. Struct., 119, 687-699. http://dx.doi.org/10.1016/j.tws.2017.07.022.
  64. Van Do, T., Doan, D.H., Duc, N.D. and Bui, T.Q. (2017b), "Phase-field thermal buckling analysis for cracked functionally graded composite plates considering neutral surface", Compos. Struct., 182, 542-548. https://doi.org/10.1016/j.compstruct.2017.09.059.
  65. Van Vinh, P. (2021), "Deflections, stresses and free vibration analysis of bi-functionally graded sandwich plates resting on Pasternak's elastic foundations via a hybrid quasi-3D theory", Mecha. Based Des. Struct. Machines, 1-32. https://doi.org/10.1080/15397734.2021.1894948.
  66. Van Vinh, P., Dung, N.T. and Tho, N.C. (2021), "Modified single variable shear deformation plate theory for free vibration analysis of rectangular FGM plates", Structures, 29, 1435-1444. https://doi.org/10.1016/j.istruc.2020.12.027.
  67. Van Vinh, P., Van Chinh, N. and Tounsi, A. (2022), "Static bending and buckling analysis of bi-directional functionally graded porous plates using an improved first-order shear deformation theory and FEM", Europ. J. Mech.-A/Solids, 96, 104743. https://doi.org/10.1016/j.euromechsol.2022.104743.
  68. Vu, T.V., Nguyen, H.T., Nguyen-Van, H., Nguyen, T.P. and Curiel-Sosa, J.L. (2021), "A refined quasi-3D logarithmic shear deformation theory-based effective meshfree method for analysis of functionally graded plates resting on the elastic foundation", Eng. Anal. Bound. Elements, 131, 174-193. https://doi.org/10.1016/j.enganabound.2021.06.021.
  69. Wang, C.M., Ke, L., Chowdhury, A.R., Yang, J., Kitipornchai, S. and Fernando, D. (2017), "Critical examination of midplane and neutral plane formulations for vibration analysis of FGM beams", Eng. Struct., 130, 275-281. https://doi.org/10.1016/j.engstruct.2016.10.051.
  70. Wang, C.M., Ke, L., Chowdhury, A.R., Yang, J., Kitipornchai, S. and Fernando, D. (2017), "Critical examination of midplane and neutral plane formulations for vibration analysis of FGM beams", Eng. Struct., 130, 275-281. https://doi.org/10.1016/j.engstruct.2016.10.051.
  71. Wei, L. and Qing, H. (2022), "Bending, buckling and vibration analysis of Bi-directional functionally graded Circular/Annular microplate based on MCST", Compos. Struct., 292, 115633. https://doi.org/10.1016/j.compstruct.2022.115633.
  72. Whitney, J.M. and Pagano, N.J. (1970), "Shear deformation in heterogeneous anisotropic plates", J. Appl. Mech., 37(4), 1031-1036. https://doi.org/10.1115/1.3408654.
  73. Ye, W., Liu, J., Zhang, J., Yang, F. and Lin, G. (2021), "A new semi-analytical solution of bending, buckling and free vibration of functionally graded plates using scaled boundary finite element method", Thin-Wall. Struct., 163, 107776. https://doi.org/10.1016/j.tws.2021.107776.
  74. Zhang, D.G. (2013), "Modeling and analysis of FGM rectangular plates based on physical neutral surface and high order shear deformation theory", Int. J. Mech. Sci., 68, 92-104. http://dx.doi.org/10.1016/j.ijmecsci.2013.01.002.
  75. Zhang, R., Bai, H. and Chen, X. (2022), "The consistent couple stress theory-based vibration and post-buckling analysis of bidirectional functionally graded microbeam", Symmetry, 14(3), 602. https://doi.org/10.3390/sym14030602.
  76. Zhang, Y.W. and She, G.L. (2022), "Wave propagation and vibration of FG pipes conveying hot fluid", Steel Compos. Struct., 42(3), 397-405. https://doi.org/10.12989/scs.2022.42.3.397.
  77. Zhang, Y.Y., Wang, Y.X., Zhang, X., Shen, H.M., and She, G.L., (2021), "On snap-buckling of FGCNTR curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. http://dx.doi.org/10.12989/scs.2021.38.3.293.
  78. Zhao, J.L., Chen, X., She, G.L., Jing, Y., Bai, R.Q., Yi, J., Pu, H.Y., and Luo, J. (2022), "Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments", Steel Compos. Struct., 43(6), 797-808. https://doi.org/10.12989/scs.2022.43.6.797.
  79. Zong, Z. (2009), Advanced Differential Qadrature Methods. Chapman and Hall/CRC.