DOI QR코드

DOI QR Code

Microstructural/geometric imperfection sensitivity on the vibration response of geometrically discontinuous bi-directional functionally graded plates (2D-FGPs) with partial supports by using FEM

  • Varun, Katiyar (School of Engineering, Shiv Nadar Institution of Eminence, Deemed to be University) ;
  • Ankit, Gupta (School of Engineering, Shiv Nadar Institution of Eminence, Deemed to be University) ;
  • Abdelouahed, Tounsi (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2021.03.23
  • Accepted : 2022.11.14
  • Published : 2022.12.10

Abstract

In the present article, the vibration response of a geometrically imperfect bi-directional functionally graded plate (2D-FGP) with geometric discontinuities and micro-structural defects (porosities) has been investigated. A porosity model has been developed to incorporate the effective material properties of the bi-directional FGP which varies in two directions i.e. along the axial and transverse direction. The geometric discontinuity is also introduced in the plate in the form of a circular cut-out at the center of the plate. The structural kinematic formulation is based on the non-polynomial trigonometric higher-order shear deformation theory (HSDT). Finite element formulation is done using C° continuous Lagrangian quadrilateral four-noded element with seven degrees of freedom per node. The equations of motion have been derived using a variational approach. Convergence and validation studies have been documented to confirm the accuracy and efficiency of the present formulation. A detailed investigation study has been done to evaluate the influence of the circular cut-out, geometric imperfection, porosity inclusions, partial supports, volume fraction indexes (along with the thickness and length), and geometrical configurations on the vibration response of 2D-FGP. It is concluded that after a particular cut-out dimension, the vibration response of the 2D FGP exhibits non-monotonic behavior.

Keywords

References

  1. Apalak, M.K. and Demirbas, M.D. (2018). "Thermal stress analysis of in-plane two-directional functionally graded plates subjected to in-plane edge heat fluxes", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 232(8), 693-716. https://doi.org/10.1177/1464420716643857.
  2. Arefi, M. and Zur, K.K. (2020), "Free vibration analysis of functionally graded cylindrical nanoshells resting on Pasternak foundation based on two-dimensional analysis", Steel Compos. Struct., 34(4), 615-623. https://doi.org/10.12989/scs.2020.34.4.615.
  3. Bansal, G., Gupta, A. and Katiyar, V. (2020), "Influence of geometric discontinuities and geometric/microstructural defects on the temperature-dependent vibration response of functionally graded plates on elastic foundation", J. Brazil. Soc. Mech. Sci. Eng., 42(10). https://doi.org/10.1007/s40430-020-02619-5.
  4. Benferhat, R., Hassaine Daouadji, T., Hadji, L. and Said Mansour, M. (2016), "Static analysis of the FGM plate with porosities", Steel Compos. Struct., 21, 123-136. https://doi.org/http://dx.doi.org/10.12989/scs.2016.21.1.123.
  5. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20, 227-249. https://doi.org/http://dx.doi.org/10.12989/scs.2016.20.2.227.
  6. Cuong-le, T., Nguyen, K.D. and Khatir, S. (2020), "A threedimensional solution for free vibration and buckling of annular plate , conical , cylinder and cylindrical shell of FG porouscellular materials using IGA", Compos. Struct., 113216. https://doi.org/10.1016/j.compstruct.2020.113216.
  7. Ebrahimi, F., Jafari, A. and Barati, M.R. (2017), "Free vibration analysis of smart porous plates subjected to various physical fields considering neutral surface position", Arab. J. Sci. Eng., 42(5), 1865-1881. https://doi.org/10.1007/s13369-016-2348-3.
  8. Galeban, M.R., Mojahedin, A., Taghavi, Y. and Jabbari, M. (2016), "Free vibration of functionally graded thin beams made of saturated porous materials", Steel Compos. Struct., 21(5), 999-1016. https://doi.org/10.12989/scs.2016.21.5.999.
  9. Gorman, D.J. (1984a), "An exact analytical approach to the free vibration analysis of rectangular plates with mixed boundary conditions", J. Sound Vib., 93(2), 235-247. https://doi.org/10.1016/0022-460X(84)90310-9.
  10. Gorman, D.J. (1984b), "An exact analytical approach to the free vibration analysis of rectangular plates with mixed boundary conditions", J. Sound Vib., 93(2), 235-247. https://doi.org/10.1016/0022-460X(84)90310-9.
  11. Grover, N., Singh, B.N. and Maiti, D.K. (2013), "Analytical and finite element modeling of laminated composite and sandwich plates: An assessment of a new shear deformation theory for free vibration response", Int. J. Mech. Sci., 67, 89-99. https://doi.org/10.1016/j.ijmecsci.2012.12.010.
  12. Gupta, A. and Talha, M. (2018a), "Influence of initial geometric imperfections and porosity on the stability of functionally graded material plates", Mech. Based Des. Struct. Machines, 46(6), 693-711. https://doi.org/10.1080/15397734.2018.1449656.
  13. Gupta, A. and Talha, M. (2018b), "Influence of porosity on the flexural and free vibration responses of functionally graded plates in thermal environment", Int. J. Struct. Stab. Dyn., 18(1), https://doi.org/10.1142/S021945541850013X.
  14. Gupta, A. and Talha, M. (2018c), "Static and stability characteristics of geometrically imperfect FGM plates resting on pasternak elastic foundation with microstructural defect", Arab. J. Sci. Eng., 43(9), 4931-4947. https://doi.org/10.1007/s13369-018-3240-0.
  15. Gupta, A., Talha, M. and Singh, B.N. (2016), "Vibration characteristics of functionally graded material plate with various boundary constraints using higher order shear deformation theory", Compos. Part B: Eng., 94, 64-74. https://doi.org/10.1016/j.compositesb.2016.03.006.
  16. Hadji, L. and Avcar, M. (2021a), "Free vibration analysis of FG porous sandwich plates under various boundary conditions", J. Appl. Comput. Mech., 7(2), 505-519. https://doi.org/10.22055/jacm.2020.35328.2628.
  17. Hadji, L. and Avcar, M. (2021b), "Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory", Adv. Nano Res., 10, 281-293. https://doi.org/https://doi.org/10.12989/anr.2021.10.3.281.
  18. Hiyam Hazim Saeed, A.A. and Mehmet, A. (2020), "Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study", Comput. Concrete, 26(3), 285-292. https://doi.org/https://doi.org/10.12989/cac.2020.26.3.285.
  19. Jha, D.K., Kant, T. and Singh, R.K. (2013), "Free vibration response of functionally graded thick plates with shear and normal deformations effects", Compos. Struct., 96, 799-823. https://doi.org/10.1016/j.compstruct.2012.09.034.
  20. Katiyar, V. and Gupta, A. (2021), "Vibration response of a geometrically discontinuous bi-directional functionally graded plate resting on elastic foundations in thermal environment with initial imperfections", Mech. Based Des. Struct. Machines, 0(0), 1-29. https://doi.org/10.1080/15397734.2021.1929313.
  21. Kitipornchai, S. and Yang, J. (2004), Semi-Analytical Solution for Nonlinear Vibration of Laminated FGM Plates with Geometric Imperfections. 41, 2235-2257. https://doi.org/10.1016/j.ijsolstr.2003.12.019.
  22. Kitipornchai, S., Yang, J. and Liew, K.M. (2004), "Semi-analytical solution for nonlinear vibration of laminated FGM plates with geometric imperfections", Int. J. Solids Struct., 41(9-10), 2235-2257. https://doi.org/10.1016/j.ijsolstr.2003.12.019.
  23. Laura, P.A.A. and Grossi, R.O. (1981), "Transverse vibrations of rectangular plates with edges elastically restrained against translation and rotation", J. Sound Vib., 75(1), 101-107. https://doi.org/10.1016/0022-460X(81)90237-6.
  24. Lee, H.P., Lim, S.P. and Chow, S.T. (1990), "Prediction of natural frequencies of rectangular plates with rectangular cutouts", Comput. Struct., 36(5), 861-869. https://doi.org/10.1016/0045-7949(90)90157-W.
  25. Malik, M. and Bert, C.W. (1996), "Implementing multiple boundary conditions in the DQ solution of higher-order PDE's: Application to free vibration of plates", Int. J. Numer. Meth. Eng., 39(7), 1237-1258. https://doi.org/10.1002/(SICI)1097-0207(19960415)39:7<1237::AID-NME904>3.0.CO;2-2.
  26. Reddy, J. (2000), "Analysis of functionally graded plates", Int. J. Numer. Methods Eng. 47, 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
  27. Sarangan, S. and Singh, B.N. (2016), "Higher-order closed-form solution for the analysis of laminated composite and sandwich plates based on new shear deformation theories", Compos. Struct., 138, 391-403. https://doi.org/10.1016/j.compstruct.2015.11.049.
  28. Shariyat, M. and Mohammadjani, R. (2014), "Three-dimensional stress field analysis of rotating thick bidirectional functionally graded axisymmetric annular plates with nonuniform loads and elastic foundations", J. Compos. Mater., 48(23), 2879-2904. https://doi.org/10.1177/0021998313503389.
  29. Thai, H.T. and Choi, D.H. (2013), "Finite element formulation of various four unknown shear deformation theories for functionally graded plates", Finite Elements Anal. Des., 75, 50-61. https://doi.org/10.1016/j.finel.2013.07.003.
  30. Thanh, C.L., Nguyen, T.N., Vu, T.H., Khatir, S. and Abdel Wahab, M. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-020-01154-0.
  31. Van Do, T., Nguyen, D.K., Duc, N.D., Doan, D.H. and Bui, T.Q. (2017), "Analysis of bi-directional functionally graded plates by FEM and a new third-order shear deformation plate theory", Thin-Wall. Struct., 119, 687-699. https://doi.org/10.1016/j.tws.2017.07.022.
  32. Wang, W., Deng, S., Zhang, S. and Geng, D. (2018), "Vibration analysis and optimization of a rectangular plate with flanging hyperellipse cutout", Shock Vib., 2018. https://doi.org/10.1155/2018/6528071.
  33. Yaylaci, M., Terzi, C. and Avcar, M. (2019), "Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane", Struct. Eng. Mech., 72, 775-783. https://doi.org/https://doi.org/10.12989/sem.2019.72.6.775.