Acknowledgement
The research described in this paper was financially supported by the Russian Science Foundation (grant No. 21-11-00198) The calculations were performed on a hybrid supercomputer K-60 at the KIAM RAS (Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences) Collective Usage Centre.
References
- Bassi, F. and Rebay, S. (2002), "Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes equations", Int. J. Numer. Meth. Fluid., 40, 197-207. https://doi.org/10.1002/fld.338.
- Cockburn, B. (1998), "An introduction to the discontinuous Galerkin method for convection-dominated problems, advanced numerical approximation of nonlinear hyperbolic equations", Adv. Numer. Approx. Nonlin. Hyperbol. Eq., 150-268. https://doi.org/10.1007/BFb0096353.
- Dumbser, M., Moschetta, J.M. and Gressier, J. (2004), "A matrix stability analysis of the carbuncle phenomenon", J. Comput. Phys., 197, 647-670. https://doi.org/10.1016/j.jcp.2003.12.013.
- Ferrero, A. and D'Ambrosio, D. (2019), "An hybrid numerical flux for supersonic flows with application to rocket nozzles", 17TH International Conference of Numerical Analysis and Applied Mathematics, Rhodes, Greece, September.
- Godunov, S.K. (1959), "A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics", Sbornik: Math., 47(8-9), 357-393.
- Gressier, J. and Moschetta, J.M. (2000), "Robustness versus accuracy in shock-wave computations", Int. J. Numer. Meth. Fluid., 33, 313-332. https://doi.org/10.1002/1097-0363(20000615)33:3<313::AIDFLD7>3.0.CO;2-E.
- Guo, S. and Tao, W.Q. (2018), "A hybrid flux splitting method for compressible flow", Numer. Heat Transf., Part B: Fundament., 73, 33-47. https://doi.org/10.1080/10407790.2017.1420315.
- Hu, L.J. and Yuan, L. (2014), "A robust hybrid hllc-force scheme for curing numerical shock instability", Appl. Mech. Mater., 577, 749-753. https://doi.org/10.4028/www.scientific.net/AMM.577.749.
- Kitamura, K. and Shima, E. (2013), "Towards shock-stable and accurate hypersonic heating computations: A new pressure flux for AUSM-family schemes", J. Comput. Phys., 245, 62-83. https://doi.org/10.1016/j.jcp.2013.02.046.
- Krasnov, M.M., Kuchugov, P.A., Ladonkina, M.E. and Tishkin, V.F. (2017), "Discontinuous Galerkin method on three-dimensional tetrahedral meshes. The usage of the operator programming method", Math. Model. Comput. Simul., 9(5), 529-543. https://doi.org/10.1134/S2070048217050064
- Krasnov, M.M., Ladonkina, M.E. and Tishkin, V.F. (2021), "RAMEG3D software package for numerical simulation of aerothermodynamics problems on high-performance computer systems", Certificate of State Registration of Computer Software NoRU20211615026.
- Ladonkina, M.E., Nekliudova, O.A., Ostapenko, V.V. and Tishkin, V.F. (2018), "On the accuracy of the discontinuous Galerkin method in the calculation of shock waves", Comput. Math. Math. Phys., 58(8), 148-156. https://doi.org/10.1134/S0965542518080122.
- Lax, P.D. (1954), "Weak solutions of nonlinear hyperbolic equations and their numerical computation", Commun. Pure Appl. Math., 7(1), 159-193. https://doi.org/10.1002/cpa.3160070112.
- Liou, M.S. (1996), "A sequel to AUSM: AUSM+", J. Comput. Phys., 129, 364-382. https://doi.org/10.1006/jcph.1996.0256.
- Menart, J.A. and Henderson, S.J. (2008), "Study of the issues of computational aerothermodynamics using a Riemann solver", AFRL Report 2008-3133.
- Nishikawa, H. and Kitamura, K. (2008), "Very simple, carbuncle-free, boundary-layer-resolving, rotatedhybrid Riemann solvers", J. Comput. Phys., 227, 2560-2581. https://doi.org/10.1016/j.jcp.2007.11.003.
- Osher, S. and Solomon, F. (1982), "Upwind difference schemes for hyperbolic systems of conservation laws", Math. Comput., 38, 339-374. https://doi.org/10.1090/S0025-5718-1982-0645656-
- Pandolfi, M. (1984), "A contribution to the numerical prediction of unsteady flows", AIAA J., 22, 602-610. https://doi.org/10.2514/3.48491.
- Pandolfi, M. and D'Ambrosio, D. (2001), "Numerical instabilities in upwind methods: analysis and cures for the "carbuncle" phenomenon", J. Comput. Phys., 166, 271-301. https://doi.org/10.1006/jcph.2000.6652.
- Peery, K.M. and Imlay, S.T. (1988), "Blunt body flow simulations", AIAA J., 2904. https://doi.org/10.2514/6.1988-2904.
- Quirk, J.J. (1992), "A contribution to the great Riemann solver debate", ICASE Report, 92-64.
- Rodionov, A.V. (2018), "Development of methods and programs for numerical simulations to nonequilibrium supersonic flows applied to aerospace and astrophysical problems", Research Thesis for the Degree of a Doctor of Physical and Mathematical Sciences, Sarov.
- Rodionov, A.V. (2019), "Artificial viscosity to cure the shock instability in high-order Godunov-type schemes", Comput. Fluid., 190, 77-97. https://doi.org/10.1016/j.compfluid.2019.06.011.
- Rodionov, A.V. (2021), "Simplified artificial viscosity approach for curing the shock instability", Comput. Fluid., 219, 1-17. https://doi.org/10.1016/j.compfluid.2021.104873.
- Roe, P., Nishikawa, H., Ismail, F. and Scalabrin, L. (2005), "On carbuncles and other excrescences", 17th AIAA Computational Fluid Dynamics Conference, 4872.
- Roe, P.L. (1981), "Approximate Riemann solvers, parameter vectors, and difference schemes", J. Comput. Phys., 43, 357-372. https://doi.org/10.1016/0021-9991(81)90128-5.
- Rusanov, V.V. (1962), "The calculation of the interaction of non-stationary shock waves and obstacles", USSR Comput. Math. Math. Phys., 1(2), 304-320. https://doi.org/10.1016/0041-5553(62)90062-9
- Spiteri, R.J. and Ruuth, S.J. (2002), "A new class of optimal high-order strong-stability-preserving time discretization methods", SIAM J. Numer. Anal., 40(2), 469-491. https://doi.org/10.1137/S0036142901389025.
- Toro, E.F. (2010), Riemann Solvers and Numerical Methods for Fluid Dynamics, Third Edition, Springer.
- Woodward, P. and Colella, Ph. (1984), "The numerical simulation of two-dimensional fluid flow with strong shocks", J. Comput. Phys., 54(1), 115-173. https://doi.org/10.1016/0021-9991(84)90142-6.
- Xie, W., Li, W., Li, H., Tian, Z. and Pan, S. (2017), "On numerical instabilities of Godunov-type schemes for strong shocks", J. Comput. Phys., 350, 607-637. https://doi.org/10.1016/j.jcp.2017.08.063.
- Yasue, K., Furudate, M., Ohnishi, N. and Sawada, K. (2010), "Implicit discontinuous Galerkin method for RANS simulation utilizing pointwise relaxation algorithm", Commun. Comput. Phys.,7(3), 510-533. https://doi.org/10.4208/cicp.2009.09.055