DOI QR코드

DOI QR Code

About influence of the choice of numerical flow in the DG method for the solution of problems with shock waves

  • Mikhail M., Krasnov (Keldysh Institute of Applied Mathematics of RAS) ;
  • Marina E., Ladonkina (Keldysh Institute of Applied Mathematics of RAS) ;
  • Olga A., Nekliudova (Keldysh Institute of Applied Mathematics of RAS) ;
  • Vladimir F., Tishkin (Keldysh Institute of Applied Mathematics of RAS)
  • Received : 2022.02.20
  • Accepted : 2022.09.01
  • Published : 2022.09.25

Abstract

This study compares various ways of calculating flows for the problems with the presence of shock waves by first-order schemes and higher-order DG method on the tests from the Quirk list, namely: Quirk's problem and its modifications, shock wave diffraction at a 90 degree corner, the problem of double Mach reflection. It is shown that the use of HLLC and Godunov's numerical schemes flows in calculations can lead to instability, the Rusanov-Lax-Friedrichs scheme flow can lead to high dissipation of the solution. The most universal in heavy production calculations are hybrid schemes flows, which allow the suppression of the development of instability and conserve the accuracy of the method.

Keywords

Acknowledgement

The research described in this paper was financially supported by the Russian Science Foundation (grant No. 21-11-00198) The calculations were performed on a hybrid supercomputer K-60 at the KIAM RAS (Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences) Collective Usage Centre.

References

  1. Bassi, F. and Rebay, S. (2002), "Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes equations", Int. J. Numer. Meth. Fluid., 40, 197-207. https://doi.org/10.1002/fld.338.
  2. Cockburn, B. (1998), "An introduction to the discontinuous Galerkin method for convection-dominated problems, advanced numerical approximation of nonlinear hyperbolic equations", Adv. Numer. Approx. Nonlin. Hyperbol. Eq., 150-268. https://doi.org/10.1007/BFb0096353.
  3. Dumbser, M., Moschetta, J.M. and Gressier, J. (2004), "A matrix stability analysis of the carbuncle phenomenon", J. Comput. Phys., 197, 647-670. https://doi.org/10.1016/j.jcp.2003.12.013.
  4. Ferrero, A. and D'Ambrosio, D. (2019), "An hybrid numerical flux for supersonic flows with application to rocket nozzles", 17TH International Conference of Numerical Analysis and Applied Mathematics, Rhodes, Greece, September.
  5. Godunov, S.K. (1959), "A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics", Sbornik: Math., 47(8-9), 357-393.
  6. Gressier, J. and Moschetta, J.M. (2000), "Robustness versus accuracy in shock-wave computations", Int. J. Numer. Meth. Fluid., 33, 313-332. https://doi.org/10.1002/1097-0363(20000615)33:3<313::AIDFLD7>3.0.CO;2-E.
  7. Guo, S. and Tao, W.Q. (2018), "A hybrid flux splitting method for compressible flow", Numer. Heat Transf., Part B: Fundament., 73, 33-47. https://doi.org/10.1080/10407790.2017.1420315.
  8. Hu, L.J. and Yuan, L. (2014), "A robust hybrid hllc-force scheme for curing numerical shock instability", Appl. Mech. Mater., 577, 749-753. https://doi.org/10.4028/www.scientific.net/AMM.577.749.
  9. Kitamura, K. and Shima, E. (2013), "Towards shock-stable and accurate hypersonic heating computations: A new pressure flux for AUSM-family schemes", J. Comput. Phys., 245, 62-83. https://doi.org/10.1016/j.jcp.2013.02.046.
  10. Krasnov, M.M., Kuchugov, P.A., Ladonkina, M.E. and Tishkin, V.F. (2017), "Discontinuous Galerkin method on three-dimensional tetrahedral meshes. The usage of the operator programming method", Math. Model. Comput. Simul., 9(5), 529-543. https://doi.org/10.1134/S2070048217050064
  11. Krasnov, M.M., Ladonkina, M.E. and Tishkin, V.F. (2021), "RAMEG3D software package for numerical simulation of aerothermodynamics problems on high-performance computer systems", Certificate of State Registration of Computer Software NoRU20211615026.
  12. Ladonkina, M.E., Nekliudova, O.A., Ostapenko, V.V. and Tishkin, V.F. (2018), "On the accuracy of the discontinuous Galerkin method in the calculation of shock waves", Comput. Math. Math. Phys., 58(8), 148-156. https://doi.org/10.1134/S0965542518080122.
  13. Lax, P.D. (1954), "Weak solutions of nonlinear hyperbolic equations and their numerical computation", Commun. Pure Appl. Math., 7(1), 159-193. https://doi.org/10.1002/cpa.3160070112.
  14. Liou, M.S. (1996), "A sequel to AUSM: AUSM+", J. Comput. Phys., 129, 364-382. https://doi.org/10.1006/jcph.1996.0256.
  15. Menart, J.A. and Henderson, S.J. (2008), "Study of the issues of computational aerothermodynamics using a Riemann solver", AFRL Report 2008-3133.
  16. Nishikawa, H. and Kitamura, K. (2008), "Very simple, carbuncle-free, boundary-layer-resolving, rotatedhybrid Riemann solvers", J. Comput. Phys., 227, 2560-2581. https://doi.org/10.1016/j.jcp.2007.11.003.
  17. Osher, S. and Solomon, F. (1982), "Upwind difference schemes for hyperbolic systems of conservation laws", Math. Comput., 38, 339-374. https://doi.org/10.1090/S0025-5718-1982-0645656-
  18. Pandolfi, M. (1984), "A contribution to the numerical prediction of unsteady flows", AIAA J., 22, 602-610. https://doi.org/10.2514/3.48491.
  19. Pandolfi, M. and D'Ambrosio, D. (2001), "Numerical instabilities in upwind methods: analysis and cures for the "carbuncle" phenomenon", J. Comput. Phys., 166, 271-301. https://doi.org/10.1006/jcph.2000.6652.
  20. Peery, K.M. and Imlay, S.T. (1988), "Blunt body flow simulations", AIAA J., 2904. https://doi.org/10.2514/6.1988-2904.
  21. Quirk, J.J. (1992), "A contribution to the great Riemann solver debate", ICASE Report, 92-64.
  22. Rodionov, A.V. (2018), "Development of methods and programs for numerical simulations to nonequilibrium supersonic flows applied to aerospace and astrophysical problems", Research Thesis for the Degree of a Doctor of Physical and Mathematical Sciences, Sarov.
  23. Rodionov, A.V. (2019), "Artificial viscosity to cure the shock instability in high-order Godunov-type schemes", Comput. Fluid., 190, 77-97. https://doi.org/10.1016/j.compfluid.2019.06.011.
  24. Rodionov, A.V. (2021), "Simplified artificial viscosity approach for curing the shock instability", Comput. Fluid., 219, 1-17. https://doi.org/10.1016/j.compfluid.2021.104873.
  25. Roe, P., Nishikawa, H., Ismail, F. and Scalabrin, L. (2005), "On carbuncles and other excrescences", 17th AIAA Computational Fluid Dynamics Conference, 4872.
  26. Roe, P.L. (1981), "Approximate Riemann solvers, parameter vectors, and difference schemes", J. Comput. Phys., 43, 357-372. https://doi.org/10.1016/0021-9991(81)90128-5.
  27. Rusanov, V.V. (1962), "The calculation of the interaction of non-stationary shock waves and obstacles", USSR Comput. Math. Math. Phys., 1(2), 304-320. https://doi.org/10.1016/0041-5553(62)90062-9
  28. Spiteri, R.J. and Ruuth, S.J. (2002), "A new class of optimal high-order strong-stability-preserving time discretization methods", SIAM J. Numer. Anal., 40(2), 469-491. https://doi.org/10.1137/S0036142901389025.
  29. Toro, E.F. (2010), Riemann Solvers and Numerical Methods for Fluid Dynamics, Third Edition, Springer. 
  30. Woodward, P. and Colella, Ph. (1984), "The numerical simulation of two-dimensional fluid flow with strong shocks", J. Comput. Phys., 54(1), 115-173. https://doi.org/10.1016/0021-9991(84)90142-6.
  31. Xie, W., Li, W., Li, H., Tian, Z. and Pan, S. (2017), "On numerical instabilities of Godunov-type schemes for strong shocks", J. Comput. Phys., 350, 607-637. https://doi.org/10.1016/j.jcp.2017.08.063.
  32. Yasue, K., Furudate, M., Ohnishi, N. and Sawada, K. (2010), "Implicit discontinuous Galerkin method for RANS simulation utilizing pointwise relaxation algorithm", Commun. Comput. Phys.,7(3), 510-533.  https://doi.org/10.4208/cicp.2009.09.055