DOI QR코드

DOI QR Code

Unveiling mesophotic diversity in Hawai'i: two new species in the genera Halopeltis and Leptofauchea (Rhodymeniales, Rhodophyta)

  • Erika A., Alvarado (School of Life Sciences, 3190 Maile Way, University of Hawai'i) ;
  • Feresa P., Cabrera (School of Life Sciences, 3190 Maile Way, University of Hawai'i) ;
  • Monica O., Paiano (School of Life Sciences, 3190 Maile Way, University of Hawai'i) ;
  • James T., Fumo (School of Life Sciences, 3190 Maile Way, University of Hawai'i) ;
  • Heather L., Spalding (Department of Biology, College of Charleston) ;
  • Celia M., Smith (School of Life Sciences, 3190 Maile Way, University of Hawai'i) ;
  • Jason C., Leonard (NOAA, Papahanaumokuakea Marine National Monument) ;
  • Keolohilani H., Lopes Jr. (NOAA, Papahanaumokuakea Marine National Monument) ;
  • Randall K., Kosaki (NOAA, Papahanaumokuakea Marine National Monument) ;
  • Alison R., Sherwood (School of Life Sciences, 3190 Maile Way, University of Hawai'i)
  • Received : 2022.06.17
  • Accepted : 2022.10.31
  • Published : 2022.12.15

Abstract

Two genera of the Rhodymeniales, Halopeltis and Leptofauchea, are here reported for the first time from the Hawaiian Islands and represent the deepest records for both genera. Molecular phylogenetic analyses of cytochrome oxidase subunit I (COI), rbcL, and large subunit ribosomal DNA (LSU) sequences for Hawaiian specimens of Leptofauchea revealed one well-supported clade of Hawaiian specimens and three additional lineages. One of these clades is described here as Leptofauchea huawelau sp. nov., and is thus far known only from mesophotic depths at Penguin Bank in the Main Hawaiian Islands. L. huawelau sp. nov. is up to 21 cm, and is the largest known species. An additional lineage identified in the LSU and rbcL analyses corresponds to the recently described L. lucida from Western Australia, and is a new record for Hawai'i. Hawaiian Halopeltis formed a well-supported clade along with H. adnata from Korea, the recently described H. tanakae from mesophotic depths in Japan, and H. willisii from North Carolina, and is here described as Halopeltis nuahilihilia sp. nov. H. nuahilihilia sp. nov. has a distinctive morphology of narrow vegetative axes that harbor constrictions along their length. The current distribution of H. nuahilihilia includes mesophotic depths around W. Maui, W. Moloka'i, and the island of Hawai'i in the Main Hawaiian Islands. Few reproductive characters were observed because of the small number of specimens available; however, both species are distinct based on phylogeny and morphology. These descriptions further emphasize the Hawaiian mesophotic zone as a location harboring many undescribed species of marine macroalgae.

Keywords

Acknowledgement

We gratefully acknowledge the NOAA Papahanaumokuakea Native Hawaiian Cultural Working Group for their invaluable contributions in developing the specific epithets for the Hawaiian species of Halopeltis and Leptofauchea. G. McFall, S. Matadobra, B. Hauk, T. Efird, A. Fukunaga, D. Wagner, and H. Owen assisted with diving and small boat operations. Our gratitude goes to Terry Kerby and the Hawai'i Undersea Research Laboratory (HURL) Pisces IV and V submersible and RCV-150 pilots and crew, as well as the crew of the R/V Ka'imikai-o-Kanaloa, for access to mesophotic habitats around the Main Hawaiian Islands. Field work and specimen collections in the Papahanaumokuakea Marine National Monument were authorized under Papahanaumokuakea Marine National Monument research permit PMNM-2019-001 issued to R. Kosaki. This work was supported by the U.S. National Science Foundation (DEB-1754117), the U.S. National Fish and Wildlife Foundation (NFWF 0810.18.059023), the National Oceanic and Atmospheric Administration (NOAA) Papahanaumokuakea Marine National Monument, NOAA Coastal Ocean Program (NA07NOS4780187 and NA07NOS478190 to the University of Hawai'i), NOAA's Undersea Research Program and Coral Reef Conservation Program through the Hawai'i Undersea Research Laboratory (NA09OAR4300219 and NA05OAR4301108), and NOAA's Office of Ocean Exploration. The scientific views and conclusions, as well as any views or opinions expressed herein, are those of the authors and do not necessarily reflect the views of the above organizations.

References

  1. Abbott, I. A. 1999. Marine red algae of the Hawaiian Islands. Bishop Museum Press, Honolulu, HI, 477 pp.
  2. Abbott, I. A. & Huisman, J. M. 2003. New species, observations, and a list of new records of brown algae (Phaeophyceae) from the Hawaiian Islands. Phycol. Res. 51:173-185. https://doi.org/10.1046/j.1440-1835.2003.t01-1-00308.x
  3. Abbott, I. A. & Littler, M. M. 1969. Some Rhodymeniales from Hawaii. Phycologia 8:165-169. https://doi.org/10.2216/i0031-8884-8-3-165.1
  4. Afonso-Carrillo, J., Rodriguez-Prieto, C., Boisset, F., Sobrino, C., Tittley, I. & Neto, A. I. 2006. Botryocladia chiajeana and Botryocladia macaronesica sp. nov. (Rhodymeniaceae, Rhodophyta) from the Mediterranean and the eastern Atlantic, with a discussion on the closely related genus Irvinea. Phycologia 45:277-292. https://doi.org/10.2216/04-97.1
  5. Baker, E., Puglise, K. A. & Harris, P. T. 2016. Mesophotic coral ecosystems: a lifeboat for coral reefs? The United Nations Environment Programme and GRID-Arendal, Nairobi and Arendal, 98 pp.
  6. Ballantine, D. L., Ruiz, H., Lozada-Troche, C. & Norris, J. N. 2017. The genus Ethelia (Etheliaceae, Rhodophyta) in the Bahamas and Puerto Rico in the western Atlantic. Bot. Mar. 60:639-652. https://doi.org/10.1515/bot-2017-0034
  7. Cabrera, F. P., Huisman, J. M., Spalding, H. L., Kosaki, R. K. & Sherwood, A. R. 2022. Diversity of Kallymeniaceae (Gigartinales, Rhodophyta) associated with Hawaiian mesophotic reefs. Eur. J. Phycol. 57:68-78. https://doi.org/10.1080/09670262.2021.1891462
  8. Conklin, K. Y., O'Doherty, D. C. & Sherwood, A. R. 2014. Hydropuntia perplexa, n. comb. (Gracilariaceae, Rhodophyta), first record of the genus in Hawai'i. Pac. Sci. 68:421-434. https://doi.org/10.2984/68.3.9
  9. Dalen, J. L. & Saunders, G. W. 2007. A review of the red algal genus Leptofauchea (Faucheaceae, Rhodymeniales) including a description of L. chiloensis sp. nov. Phycologia 46:198-213. https://doi.org/10.2216/06-41.1
  10. Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792-1797. https://doi.org/10.1093/nar/gkh340
  11. Filloramo, G. V. & Saunders, G. W. 2015. A re-examination of the genus Leptofauchea (Faucheaeceae, Rhodymeniales) with clarification of species in Australia and the Northwest Pacific. Phycologia 54:375-384. https://doi.org/10.2216/14-110.1
  12. Filloramo, G. V. & Saunders, G. W. 2016. Application of multigene phylogenetics and site-stripping to resolve intraordinal relationships in the Rhodymeniales (Rhodophyta). J. Phycol. 52:339-355. https://doi.org/10.1111/jpy.12418
  13. Freshwater, D. W. & Rueness, J. 1994. Phylogenetic relationships of some European Gelidium (Gelidiales, Rhodophyta) species, based on rbcL nucleotide sequence analysis. Phycologia 33:187-194. https://doi.org/10.2216/i0031-8884-33-3-187.1
  14. Gavio, B. & Fredericq, S. 2005. New species and new records of offshore members of the Rhodymeniales (Rhodophyta) in the Northern Gulf of Mexico. Gulf Mex. Sci. 23:58-83.
  15. Grigg, R. W. 1988. Paleoceanography of coral reefs in the Hawaiian-Emperor Chain. Science 240:1737-1743. https://doi.org/10.1126/science.240.4860.1737
  16. Guiry, M. D. & Guiry, G. M. 2022. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from: http://www.algaebase.org. Accessed May 31, 2022.
  17. Harris, P. T., Bridge, T. C. L., Beaman, R. J., Webster, J. M., Nichol, S. L. & Brooke, B. P. 2013. Submerged banks in the Great Barrier Reef, Australia, greatly increase available coral reef habitat. ICES J. Mar. Sci. 70:284-293. https://doi.org/10.1093/icesjms/fss165
  18. Hinderstein, L. M., Marr, J. C. A., Martinez, F. A., Dowgiallo, M. J., Puglise, K. A., Pyle, R. L., Zawada, D. G. & Appeldoorn, R. 2010. Theme section on "Mesophotic coral ecosystems: characterization, ecology, and management." Coral Reefs 29:247-251. https://doi.org/10.1007/s00338-010-0614-5
  19. Huisman, J. M. & Abbott, I. A. 2003. The Liagoraceae (Rhodophyta: Nemaliales) of the Hawaiian Islands. 1: First record of the genus Gloiotrichus for Hawai'i and the Pacific Ocean. Pac. Sci. 57:267-273. https://doi.org/10.1353/psc.2003.0022
  20. Huisman, J. M. & Saunders, G. W. 2020. Out of the dark: Leptofauchea lucida (Rhodymeniales: Faucheaceae), a new red algal species from the Houtman Abrolhos, Western Australia. Nuytsia 31:163-167. https://doi.org/10.58828/nuy00966
  21. Kane, C., Kosaki, R. & Wagner, D. 2014. High levels of mesophotic reef fish endemism in the Northwestern Hawaiian Islands. Bull. Mar. Sci. 90:693-703. https://doi.org/10.5343/bms.2013.1053
  22. Kosaki, R. K., Pyle, R. L., Leonard, J. C., Hauk, B. B., Whitton, R. K. & Wagner, D. 2017. 100% endemism in mesophotic reef fish assemblages at Kure Atoll, Hawaiian Islands. Mar. Biodivers. 47:783-784. https://doi.org/10.1007/s12526-016-0510-5
  23. Kraft, G. T., Saunders, G. W., Abbott, I. A. & Haroun, R. J. 2004. A unique calcified brown alga from Hawaii: Newhousia imbricata gen. et sp. nov. (Dictyotales, Phaeophyceae). J. Phycol. 40:383-394. https://doi.org/10.1111/j.1529-8817.2004.03115.x
  24. Lanfear, R., Calcott, B., Ho, S. Y. W. & Guindon, S. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29:1695-1701. https://doi.org/10.1093/molbev/mss020
  25. Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. 2017. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34:772-773.
  26. Le Gall, L. L., Dalen, J. L. & Saunders, G. W. 2008. Phylogenetic analyses of the red algal order Rhodymeniales supports recognition of the Hymenocladiaceae fam. nov., Fryeellaceae fam. nov., and Neogastroclonium gen. nov. J. Phycol. 44:1556-1571. https://doi.org/10.1111/j.1529-8817.2008.00599.x
  27. Lesser, M. P., Slattery, M. & Leichter, J. 2009. Ecology of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 375:1-8. https://doi.org/10.1016/j.jembe.2009.05.009
  28. Lozada-Troche, C. & Ballantine, D. L. 2010. Champia puertoricensis sp. nov. (Rhodophyta: Champiaceae) from Puerto Rico, Caribbean Sea. Bot. Mar. 53:131-141. https://doi.org/10.1515/BOT.2010.017
  29. McDermid, K. J. & Abbott, I. A. 2006. Deep subtidal marine plants from the Northwestern Hawaiian Islands: new perspective on biogeography. Atoll Res. Bull. 543:525-532.
  30. Miller, M. A., Pfeiffer, W. & Schwartz, T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), Institute of Electrical and Electronics Engineers, New York, pp. 1-8.
  31. Paiano, M. O., Huisman, J. M., Cabrera, F. P., Spalding, H. L., Kosaki, R. K. & Sherwood, A. R. 2020. Haraldiophyllum hawaiiense sp. nov. (Delesseriaceae, Rhodophyta): a new mesophotic genus record for the Hawaiian Islands. Algae 35:337-347. https://doi.org/10.4490/algae.2020.35.11.5
  32. Pyle, R. L., Boland, R., Bolick, H., Bowen, B. W., Bradley, C. J., Kane, C., Kosaki, R. K., Langston, R., Longenecker, K., Montgomery, A., Parrish, F. A., Popp, B. N., Rooney, J., Smith, C. M., Wagner, D. & Spalding, H. L. 2016. A comprehensive investigation of mesophotic coral ecosystems in the Hawaiian Archipelago. PeerJ 4:e2475.
  33. Pyle, R. L. & Copus, J. M. 2019. Mesophotic coral ecosystems: introduction and overview. In Loya, Y., Puglise, K. A. & Bridge, T. C. L. (Eds.) Mesophotic Coral Ecosystems. Coral Reefs of the World, Vol. 12. Springer, Cham, pp. 3-27.
  34. Rodriguez-Prieto, C. & de Clerck, O. 2009. Leptofauchea coralligena (Faucheaceae, Rhodophyta), a new species from the Mediterranean Sea. Eur. J. Phycol. 44:107-121. https://doi.org/10.1080/09670260802357111
  35. Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61:539-542. https://doi.org/10.1093/sysbio/sys029
  36. Rooney, J., Donham, E., Montgomery, A., Spalding, H., Parrish, F., Boland, R., Fenner, D., Gove, J. & Vetter, O. 2010. Mesophotic coral ecosystems in the Hawaiian archipelago. Coral Reefs 29:361-367. https://doi.org/10.1007/s00338-010-0596-3
  37. Santiago, J. A. S., Carneiro, P. B. M., Santiago, A. P., Feijo, R. G. & Maggioni, R. 2016. A new species of Rhodymeniaceae (Rhodophyta, Rhodymeniales) from the Northern Brazilian Coast: Botryocladia franciscana sp. nov. Phytotaxa 243:137-146. https://doi.org/10.11646/phytotaxa.243.2.3
  38. Saunders, G. W. 2005. Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 360:1879-1888. https://doi.org/10.1098/rstb.2005.1719
  39. Saunders, G. W., Lane, C. E., Schneider, C. W. & Kraft, G. T. 2006. Unraveling the Asteromenia peltata species complex with clarification of the genera Halichrysis and Drouetia (Rhodymeniaceae, Rhodophyta). Can. J. Bot. 84:1581-1607. https://doi.org/10.1139/b06-119
  40. Saunders, G. W. & McDonald, B. 2010. DNA barcoding reveals multiple overlooked Australian species of the red algal order Rhodymeniales (Florideophyceae), with resurrection of Halopeltis J. Agardh and description of Pseudohalopeltis gen. nov. Botany 88:639-667. https://doi.org/10.1139/B10-038
  41. Saunders, G. W. & Moore, T. E. 2013. Refinements for the amplification and sequencing of red algal DNA barcode and RedToL phylogenetic markers: a summary of current primers, profiles and strategies. Algae 28:31-43. https://doi.org/10.4490/algae.2013.28.1.031
  42. Saunders, G. W., Strachan, I. M. & Kraft, G. T. 1999. The families of the order Rhodymeniales (Rhodophyta): a molecular-systematic investigation with a description of Faucheaceae fam. nov. Phycologia 38:23-40. https://doi.org/10.2216/i0031-8884-38-1-23.1
  43. Schmitz, F. 1889. Systematische ubersicht der bisher bekannten gattungen der Florideen. Flora 72:435-456.
  44. Schneider, C. W., Freshwater, D. W. & Saunders, G. W. 2012. First report of Halopeltis (Rhodophyta, Rhodymeniaceae) from non-tropical Northern Hemisphere: H. adnata (Okamura) comb. nov. from Korea, and H. pellucida sp. nov. and H. willisii sp. nov. from the North Atlantic. Algae 27:95-108. https://doi.org/10.4490/algae.2012.27.2.095
  45. Schneider, C. W. & Lane, C. E. 2008. Notes on the marine algae of the Bermudas. 9. The genus Botryocladia (Rhodophyta, Rhodymeniaceae), including B. bermudana, B. exquisita and B. flookii spp. nov. Phycologia 47:614-629. https://doi.org/10.2216/08-44.1
  46. Schneider, C. W., Popolizio, T. R. & Saunders, G. W. 2019. Collections from the mesophotic zone off Bermuda reveal three species of Kallymeniaceae (Gigartinales, Rhodophyta) in genera with transoceanic distributions. J. Phycol. 55:415-424. https://doi.org/10.1111/jpy.12828
  47. Sherwood, A. R. & Carlile, A. L. 2012. Schimmelmannia (Rhodophyta: Acrosymphytales): first report of the genus in Hawai'i. Pac. Sci. 66:529-533. https://doi.org/10.2984/66.4.10
  48. Sherwood, A. R., Kurihara, A., Conklin, K. Y., Sauvage, T. & Presting, G. G. 2010. The Hawaiian Rhodophyta Biodiversity Survey (2006-2010): a summary of principal findings. BMC Plant Biol. 10:258.
  49. Sherwood, A. R., Lin, S.-M., Wade, R. M., Spalding, H. L., Smith, C. M. & Kosaki, R. K. 2019. Characterization of Martensia (Delesseriaceae, Rhodophyta) from shallow and mesophotic habitats in the Hawaiian Islands: description of four new species. Eur. J. Phycol. 55:172-185.
  50. Sherwood, A. R., Paiano, M. O., Spalding, H. L. & Kosaki, R. K. 2020. Biodiversity of Hawaiian Peyssonneliales (Rhodophyta): Sonderophycus copusii sp. nov., a new species from the Northwestern Hawaiian Islands. Algae 35:145-155. https://doi.org/10.4490/algae.2020.35.5.20
  51. Spalding, H. L. 2012. Ecology of mesophotic macroalgae and Halimeda kanaloana meadows in the Main Hawaiian Islands. Ph.D. dissertation, University of Hawai'i at Manoa, Honolulu, HI, pp. 1-222.
  52. Spalding, H. L., Amado-Filho, G. M., Bahia, R. G., Ballantine, D. L., Fredericq, S., Leichter, J. J., Nelson, W. A., Slattery, M. & Tsuda, R. T. 2019. Macroalgae. In Loya, Y., Pulise, K. A. & Bridge, T. C. L. (Eds.) Mesophotic Coral Ecosystems. Springer, Cham, pp. 507-536.
  53. Spalding, H. L., Conklin, K. Y., Smith, C. M., O'Kelly, C. J. & Sherwood, A. R. 2016. New Ulvaceae (Ulvophyceae, Chlorophyta) from mesophotic ecosystems across the Hawaiian archipelago. J. Phycol. 52:40-53. https://doi.org/10.1111/jpy.12375
  54. Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312-1313. https://doi.org/10.1093/bioinformatics/btu033
  55. Strait, N., Williams, T. M., Sherwood, A. R., Kosaki, R. K., Giuseffi, L., Smith, C. M. & Spalding, H. L. 2022. Nitrogen stable isotopes (δ 15N) and tissue nitrogen in shallow-water and mesophotic macroalgae differ between the Main Hawaiian Islands and the Northwestern Hawaiian Islands. Limnol. Oceanogr. 67:1211-1226. https://doi.org/10.1002/lno.12068
  56. Suzuki, M., Hisayoshi, N., Terada, R., Kitayama, T., Hashimoto, T. & Yoshizaki, M. 2012. Morphology and molecular relationships of Leptofauchea leptophylla comb. nov. (Rhodymeniales, Rhodophyta) from Japan. Phycologia 51:479-488. https://doi.org/10.2216/11-78.1
  57. Suzuki, M. & Terada, Y. 2021. Morpho-anatomical and molecular reassessments of Rhodymenia prostrata (Rhodymeniaceae, Rhodophyta) from Japan support the recognition of Halopeltis tanakae nom. nov. Phycologia 60:582-588. https://doi.org/10.1080/00318884.2021.1959743
  58. Wang, H. W., Kawaguchi, S., Horiguchi, T. & Masuda, M. 2000. Reinstatement of Grateloupia catenata (Rhodophyta, Halymeniaceae) on the basis of morphology and rbcL sequences. Phycologia 39:228-237. https://doi.org/10.2216/i0031-8884-39-3-228.1