DOI QR코드

DOI QR Code

Tropical red alga Compsopogon caeruleus: an indicator of thermally polluted waters of Europe in the context of temperature and oxygen requirements

  • Andrzej S., Rybak (Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University) ;
  • Andrzej M., Woyda-Ploszczyca (Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University)
  • Received : 2022.05.21
  • Accepted : 2022.11.18
  • Published : 2022.12.15

Abstract

The red alga Compsopogon caeruleus can generally be found in tropical and subtropical waters worldwide. In addition to its natural habitats, this species may be found in waters that receive abnormally hot water, e.g., from powerhouses. To date, the presence of C. caeruleus has not been observed in thermally polluted lacustrine ecosystems in Poland, which has a moderate climate. The thalli of this red alga were found growing on Vallisneria spiralis in Lichenskie Lake. Importantly, this paper presents a previously unknown relationship between the temperature (20, 25, 30, 35, and 40℃) and oxygen requirements of C. caeruleus (based on ex situ measurements of O2 consumption by thalli). Surprisingly, 35℃ can be the optimum temperature for C. caeruleus, and this temperature is higher than the values reported by some previous thermal analyses by approximately 10℃. Additionally, we reviewed and mapped the distribution of this nonnative and mesophilic red alga in natural / seminatural water ecosystems in Europe. Finally, we propose that the occurrence of C. caeruleus mature thalli can be a novel, simple and easy-to-recognize bioindicator of artificially and permanently heated waters in moderate climate zones by a regular discharge of postindustrial water.

Keywords

Acknowledgement

We express our thanks to Urszula Sobczynska, Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland, for her assistance in the molecular identification of the species. We are grateful to dr. Jaroslaw Kubiak from the Cartographic and Geodetic Environmental Research Laboratory, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznan, Poland, for the recalcu lation of some Compsopogon geographical locations, i.e., the conversion from Universal Transverse Mercator (UTM) coordinates to a geographic coordinate system. This work was supported by the National Science Centre, Poland (grant 2015/19/D/NZ3/00087; principal investigator: dr. hab. Andrzej M. Woyda-Ploszczyca). The sponsor was not involved in preparing the article and deciding to submit the article for publication.

References

  1. Aboal, M. 1986. Flora algal de la Rambla del Tinajon (Rio Segura), Murcia, S.E. de Espana. Limnetica 2:103-108. https://doi.org/10.23818/limn.02.12
  2. Aboal, M., Puig, M. A., Sanchez-Godinez, A. & Soler, G. 1994. Algal standing-crop in some Mediterranean temporary rivers in southeastern Spain. Internationale Vereinigung fur Theoretische und Angewandte Limnologie: Verhandlungen 25:1746-1750.
  3. Aboal Sanjurjo, M. 1989. Contribucion al conocimiento de las algas epicontinentales del SE de Espana II: Los Rodofitos (Rhodophyceae). Lazaroa 11:115-122.
  4. Ahmad, S., Kothari, R., Shankarayan, R. & Tyagi, V. V. 2020. Temperature dependent morphological changes on algal growth and cell surface with dairy industry wastewater: an experimental investigation. 3 Biotech 10:24.
  5. Alvarez Cobelas, M. 1984. Catalogo de las algas continentales espanolas. II. "Craspedophyceae, Cryptophyceae, Chrysophyceae, Dinophyceae, Euglenophyceae, Haptophyceae, Phaeophyceae, Rhodophyceae, Xanthophyceae." Acta Bot. Malacit. 9:27-40. https://doi.org/10.24310/actabotanicaabmabm.v9i.9626
  6. Atkin, O. K. & Tjoelker, M. G. 2003. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 8:343-351. https://doi.org/10.1016/S1360-1385(03)00136-5
  7. Baird, R. B., Eaton, A. D., Rice, E. W. & Bridgewater, L. L. 2017. Standard methods for the examination of water and wastewater. 23rd ed. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC, 874 pp.
  8. Battiato, A., Cormaci, M., Furnari, G. & Lanfranco, E. 1979. The occurrence of Compsopogon coeruleus (Balbis) Montagne (Rhodophyta, Bangiophycidae) in Malta and of Compsopogon chalybeus Kutzing in an aquarium at Catania (Sicily). Rev. Algol. Nouv. Ser. 14:11-16.
  9. Beaty Biodiversity Museum, Algae Collection. 2022. Available from: https://beatymuseum.ubc.ca/research-2/collections/herbarium/herbarium-algae. Accessed Oct 29, 2022.
  10. Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A. & Wood, E. F. 2018. Present and future Koppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5:180214.
  11. Berger, C., Ba, N., Gugger, M., Bouvy, M., Rusconi, F., Coute, A., Troussellier, M. & Bernard, C. 2006. Seasonal dynamics and toxicity of Cylindrospermopsis raciborskii in Lake Guiers (Senegal, West Africa). FEMS Microbiol. Ecol. 57:355-366. https://doi.org/10.1111/j.1574-6941.2006.00141.x
  12. Beutler, M., Wiltshire, K. H., Meyer, B., Moldaenke, C., Luring, C., Meyerhofer, M., Hansen, U.-P. & Dau, H. 2002. A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynth. Res.72:39-53. https://doi.org/10.1023/A:1016026607048
  13. Blackler, H. & Krishnamurthy, V. 1961. A Compsopogon occurring in the Reddish canal, near Manchester. Br. Phycol. Bull. 2:87-88. https://doi.org/10.1080/00071616100650071
  14. Bogacka-Kapusta, E. & Kapusta, A. 2013. Spatial and diurnal distribution of Cladocera in beds of invasive Vallisneria spiralis and open water in heated lake. Acta Zool. Bulg. 65:225-231.
  15. Boillot, A. 1958. Sur la presence en France d'un Compsopogon (Rhodophyceae, Bangioideae). Bull. Soc. Phycol. Fr. 4:13-16.
  16. Breton, G. 2014. Introduction de l'algue rouge Compsopogon aeruginosus (J. Agardh) Kutzing dans le port de Rouen, Normandie, France. Hydroecol. Appl. 18:15-22. https://doi.org/10.1051/hydro/2013052
  17. Busquets, J. M., Picado Pumarino, C. & Hernandez, M. 1985. Compsopogon coeruleus (Blabis) Montagne, (Rhodophyta). Ampliacion de su area de distribucion en la Peninsula Iberica. Collect. Bot. 16:229-230.
  18. Cantoral Uiza, E. A. & Aboal Sanjurjo, M. 2001. El marjal de Pego-Oliva: evolucion temporal de la flora de macroalgas. Limnetica 20:159-171. https://doi.org/10.23818/limn.20.15
  19. Chapuis, I. S., Sanchez Castillo, P. M. & Aboal Sanjurjo, M. 2014. Checklist of freshwater red algae in the Iberian Peninsula and the Balearic Islands. Nova Hedwigia 98:213-232. https://doi.org/10.1127/0029-5035/2014/0153
  20. Colley, R. H. 1916. Notes from the Woods Hole Laboratory - 1915. III - Compsopogon coeruleus (Balbis) Mont. Rhodora 18:92-92.
  21. Dodds, W. K. & Whiles, M. R. 2010. Freshwater ecology: concepts and environmental applications of limnology. 2nd ed. Elsevier, Amsterdam, pp. 399-436.
  22. Donze, M. 1968. The algal vegetation of the Ria de Arosa (NW. Spain). Blumea Biodivers. Evol. Biogeogr. Plants 16:159-192.
  23. Drobnik, J. 2007. Zielnik i zielnikoznawstwo. Wydawnictwo Naukowe PWN, Warszawa, 294 pp.
  24. Dziuba, M. K., Kuczynski, L., Wejnerowski, L., Cerbin, S. & Wolinska, J. 2021. Countergradient variation concealed adaptive responses to temperature increase in Daphnia from heated lakes. Limnol. Oceanogr. 66:1268-1280. https://doi.org/10.1002/lno.11680
  25. Edigos, A. I. & Aboal, M. 2003. Thorea violacea Bory de SaintVincent (Thoreaceae, Rhodophyceae): en una surgencia del Marjal Pego-Oliva, Comunidad Valenciana. Nueva cita para la flora algal espanola. An. Jard. Bot. Madrid 60:27-32.
  26. Ejsmont-Karabin, J. & Hutorowicz, A. 2011. Rotifera communities associated with invasive Vallisneria spiralis L. (Hydrocharitaceae) versus native macrophytes in the lakes heated by power stations (Konin Lakes, W. Poland). Polish J. Ecol. 59:569-576.
  27. Ejsmont-Karabin, J., Hutorowicz, A., Kapusta, A., Stawecki, K., Tunowski, J. & Zdanowski, B. 2020. Rotifers in heated Konin lakes: a review of long-term observations. Water 12:1660.
  28. Eloranta, P. & Kwandrans, J. 2007. Freshwater red algae (Rhodophyta): identification guide to European taxa, particularly to those in Finland. Norrlinia. Saarijarven Offset Oy, Saarijarvi, 103 pp.
  29. Eloranta, P. & Kwandrans, J. 2012. Illustrated guidebook to common freshwater red algae. W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, 49 pp.
  30. Eloranta, P., Kwandrans, J. & Kusel-Fetzmann, E. 2011. Susswasserflora von Mitteleuropa, Freshwater Flora of Central Europe, Rhodophyta and Phaeophyceae. Spekrum Akademischer Verlag, Heidelberg, 156 pp.
  31. Elsevier Science Direct. 2022. Available from: https://www.sciencedirect.com. Accessed Oct 29, 2022.
  32. Friedrich, G. 1966. Compsopogon hookeri Montagne (Rhodophyceae, Bangioideae) neu fur Deutschland. Nova Hedwigia 12:399-403.
  33. Friedrich, G. 1973. Okologische Untersuchungen an einem thermisch anomalen Fliessgewasser (Erft/Niederrhein). Kempen-Huls, 125 pp.
  34. Gabka, M. 2002. Vallisneria spiralis (Hydrocharitaceae): a new species to the Polish flora. Fragm. Florist. Geobot. Pol. 9:67-73.
  35. Gabka, M. & Owsianny, P. M. 2009. First records of the Hygrophila polysperma (Roxb.) T. Anderson (Acanthaceae) in Poland. Rocz. Akad. Rol. Pozn. Bot. 13:9-14.
  36. Garcia-Fernandez, M. E., Vis, M. L. & Aboal, M. 2015. Kumanoa mahlacensis (Batrachospermales, Rhodophyta) in a Mediterranean coastal wetland, a new species for the European continental algal flora. An. Jard. Bot. Madrid 72:e018.
  37. Gartner, G. 1987. Compsopogon coeruleus (Balbis) Montagne (Rhodophyta, Bangiophycidae) erstmals in Tirol als Aquarienbewohner nachgewiesen. Ber. Naturwiss.-Med. Ver. Innsb. 74:41-47.
  38. Georgescauld, F., Moynie, L., Habersetzer, J., Cervoni, L., Mocan, I., Borza, T., Harris, P., Dautant, A. & Lascu, I. 2013. Intersubunit ionic interactions stabilize the nucleoside diphosphate kinase of Mycobacterium tuberculosis. PLoS ONE 8:e57867.
  39. Google Scholar. 2022. Available from: https://scholar.google.com. Accessed Oct 29, 2022.
  40. Guillard, R. R. L. & Lorenzen, C. J. 1972. Yellow-green algae with Chlorophyllide C. J. Phycol. 8:10-4. https://doi.org/10.1111/j.0022-3646.1972.00010.x
  41. Guiry, M. D. & Guiry, G. M. 2022. Algaebase. Available from: http://www.algaebase.org. Accessed Oct 29, 2022.
  42. Holt, E. A. & Miller, S. W. 2010. Bioindicators: using organisms to measure environmental impacts. Nat. Educ. Knowl. 3:8.
  43. Hussner, A. & Losch, R. 2005. Alien aquatic plants in a thermally abnormal river and their assembly to neophytedominated macrophyte stands (River Erft, NorthrhineWestphalia). Limnologica 35:18-30. https://doi.org/10.1016/j.limno.2005.01.001
  44. Hutorowicz, A. 2006. Vallisneria spiralis L. (Hydrocharitaceae) in Lakes in the vicinity of Konin (Kujawy Lakeland). Biodivers. Res. Conserv. 1-2:154-158.
  45. JSTOR. 2022. Available from: https://www.jstor.org. Accessed Oct 29, 2022.
  46. Koletic, N., Alegro, A., Rimac, A., Segota, V., Vukovic N. & Vilovic, T. 2019. Expanding the frontiers: checklist of Croatian freshwater Rhodophytes. Seventh European Phycological Congress. Eur. J. Phycol. 54(Suppl 1):1-109.
  47. Koletic, N., Alegro, A., Rimac, A., Vukovic, N. & Segota, V. 2020a. Catalogue of croatian freshwater Rhodophytes. Phytotaxa 434:151-169. https://doi.org/10.11646/phytotaxa.434.2.2
  48. Koletic, N., Alegro, A., Rimac, A., Vukovic, N., Segota, V. & Vilovic, T. 2020b. Environmental preferences of Polysiphonia subtilissima (Ceramiales, Rhodophyta) in transitional, oligohaline and fresh waters of the East Adriatic coast. Nova Hedwigia 111:39-58. https://doi.org/10.1127/nova_hedwigia/2020/0593
  49. Koppen, W. 1900. Versuch Einer Klassifikation der Klimate, Vorzugsweise Nach Ihren Beziehungen Zur Pflanzenwelt. Geogr. Z. 6:657-679.
  50. Kremer, B. P. 1983. Untersuchungen zur Okophysiologie einiger Susswasserrotalgen. Decheniana (Bonn) 136:31-42. https://doi.org/10.21248/decheniana.v136.4100
  51. Krishnamurthy, V. 1962. The morphology and taxonomy of the genus Compsopogon Montagne. J. Linn. Soc. Lond. Bot. 58:207-222. https://doi.org/10.1111/j.1095-8339.1962.tb00894.x
  52. Kwandrans, J. & Eloranta, P. 2010. Diversity of freshwater red algae in Europe. Oceanol. Hydrobiol. Stud. 39:161-169. https://doi.org/10.2478/v10009-010-0015-7
  53. Lane, D. J. 1991. 16S/23S rRNA sequencing. In Stackebrandt, E. & Goodfellow, M. (Eds.) Nucleic Acid Techniques in Bacterial Systematic. John Wiley and Sons, New York, pp. 115-175.
  54. Mauch, E., Schmedtje, U., Maetze, A. & Fischer, F. 2003. Taxaliste der Gewasserorganismen Deutschlands zur Kodierung biologischer Befunde. Informationsberichte des Bayerischen Landsamtes fur Wasserwirtschaft Heft 01/03. Herausgeber und Verlag, Munchen, 388 pp.
  55. Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. 1988. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71:491-499. https://doi.org/10.1016/0378-1119(88)90066-2
  56. Mendeley Data. 2022. Available from: https://data.mendeley.com. Accessed Oct 29, 2022.
  57. Miranda, M. R., Canepa, G. E., Bouvier, L. A. & Pereira, C. A. 2008. Trypanosoma cruzi nucleoside diphosphate kinase 1 (TcNDPK1) has a broad nuclease activity. Parasitology 135:1661-1666. https://doi.org/10.1017/S0031182008005106
  58. Najberek, K. & Solarz, W. 2011. Konin Lakes as a hot spot for biological invasions in Poland. In Glowacinski, Z., Olarma, H., Pawlowski, J. & Solarz, W. (Eds.) Alien Species in the Fauna of Poland. Instytut Ochrony Przyrody PAN, Krakow, pp. 615-624.
  59. Nan, F., Feng, J., Lv, J., Liu, Q. & Xie, S. 2016. Evolutionary history of the monospecific Compsopogon genus (Compsopogonales, Rhodophyta). Algae 31:303-315. https://doi.org/10.4490/algae.2016.31.10.22
  60. National Museum of Natural History, Botany Collection. 2022. Available from: https://collections.nmnh.si.edu/search/botany. Accessed Oct 29, 2022.
  61. Necchi, O. Jr. 2006. Short-term responses of photosynthesis to temperature and irradiance in the freshwater red alga Compsopogon coeruleus. Algol. Stud. 119:125-138. https://doi.org/10.1127/1864-1318/2006/0119-0125
  62. Necchi, O. Jr., Garcia Fo, A. S., Salomaki, E. D., West, J. A., Aboal, M. & Vis, M. L. 2013. Global sampling reveals low genetic diversity within Compsopogon (Compsopogonales, Rhodophyta). Eur. J. Phycol. 48:152-162. https://doi.org/10.1080/09670262.2013.783626
  63. Necchi, O. Jr. & Zucchi, M. R. 2001. Photosynthetic performance of freshwater Rhodophyta in response to temperature, irradiance, pH and diurnal rhythm. Phycol. Res. 49:305-318. https://doi.org/10.1111/j.1440-1835.2001.tb00261.x
  64. Nejrup, L. B., Staehr, P. A. & Thomsen, M. S. 2013. Temperature- and light-dependent growth and metabolism of the invasive red algae Gracilaria vermiculophylla: a comparison with two native macroalgae. Eur. J. Phycol. 48:295-308. https://doi.org/10.1080/09670262.2013.830778
  65. Parmar, T. K., Rawtani, D. & Agrawal, Y. K. 2016. Bioindicators: the natural indicator of environmental pollution. Front. Life Sci. 9:110-118. https://doi.org/10.1080/21553769.2016.1162753
  66. PubMed. 2022. Available from: https://pubmed.ncbi.nlm.nih.gov. Accessed Oct 29, 2022.
  67. Pyka, J. P., Stawecki, K. & Zdanowski, B. 2007. Variation in the contents of nitrogen and phosphorus in the heated water ecosystem of the Konin Lakes. Arch. Pol. Fish. 15:259-271.
  68. Raven, J. A. & Geider, R. J. 1988. Temperature and algal growth. New Phytol. 110:441-461. https://doi.org/10.1111/j.1469-8137.1988.tb00282.x
  69. RCIN (Repozytorium Cyfrowe Instytutow Naukowych). 2022. Available from: https://rcin.org.pl/dlibra. Accessed Oct 29, 2022.
  70. Roy, D., Alderman, D., Anastasiu, P., Arianoutsou, M., Augustin, S., Bacher, S., Basnou, C., Beisel, J., Bertolino, S., Bonesi, L., Bretagnolle, F., Chapuis, J. L., Chauvel, B., Chiron, F., Clergeau, P., Cooper, J., Cunha, T., Delipetrou, P., Desprez-Loustau, M., Detaint, M., Devin, S., Didziulis, V., Essl, F., Galil, B. S., Genovesi, P., Gherardi, F., Gollasch, S., Hejda, M., Hulme, P. E., Josefsson, M., Kark, S., Kauhala, K., Kenis, M., Klotz, S., Kobelt, M., Kuhn, I., Lambdon, P. W., Larsson, T., Lopez-Vaamonde, C., Lorvelec, O., Marchante, H., Minchin, D., Nentwig, W., Occhipinti-Ambrogi, A., Olenin, S., Olenina, I., Ovcharenko, I., Panov, V. E., Pascal, M., Pergl, J., Perglova, I., Pino, J., Pysek, P., Rabitsch, W., Rasplus, J., Rathod, B., Roques, A., Roy, H., Sauvard, D., Scalera, R., Shiganova, T. A., Shirley, S., Shwartz, A., Solarz, W., Vila, M., Winter, M., Yesou, P., Zaiko, A., Adriaens, T., Desmet, P. & Reyserhove, L. 2022. DAISE - Inventory of alien invasive species in Europe. Version 1.7. Research Institute for Nature and Forest (INBO). Available from: https://doi.org/10.15468/ybwd3x. Accessed Oct 29, 2022.
  71. Sabater, S., Aboal, M. & Cambra, J. 1989. Nuevas observaciones de Rodoficeas en agua epicontinentales del NE y SE de Espana. Limnetica 5:93-100. https://doi.org/10.23818/limn.05.08
  72. SAG (The Culture Collection of Algae). 2022. Available from: https://uni-goettingen.de/en/www.uni-goettingen.de/de/184982.html. Accessed Oct 29, 2022.
  73. Sanchez Castillo, P. M., Chapuis, I. S. & Salmeron, A. M. 2011. Estudio comparado de dos poblaciones de Compsopogon (Bangiophyceae, Rhodophyta) de caracter invasor. In XVIII Simposio Iberico de Botanica Criptogamica, Universidad de Barcelona, Barcelona, p. 50.
  74. Scopus. 2022. Available from: https://www.scopus.com. Accessed Oct 29, 2022.
  75. Sheath, R. G. & Vis, M. L. 2015. Red algae. In Wehr, H., Sheath, R. & Kociolek, J. P. (Eds.) Freshwater Algae of North America: Ecology and Classification. 2nd ed. Academic Press, Amsterdam, pp. 237-264.
  76. Socha, D. 1994. Quantitative and qualitative changes of the phytoplankton in heated Konin lakes. Arch. Pol. Fish. 2:219-233.
  77. Socha, D. & Hutorowicz, A. 2009. Changes in the quantitative relations of the phytoplankton in heated lakes. Arch. Pol. Fish. 17:239-251.
  78. SpringerLink. 2022. Available from: https://link.springer.com. Accessed Oct 29, 2022.
  79. Starmach, K. 1977. Freshwater flora of Poland. Vol. 14. Phaeophyta, Rhodophyta. PWN, Warszawa-Krakow, 445 pp.
  80. Starmach, K. 1978. Compsopogon aeruginosus, Pithophora varia und epiphytische Cyanophyceen im Bassin des Gewachshauses im Botanischen Garten in Krakow. Fragm. Florist. Geobot. Pol. 24:157-164.
  81. Stoyneva, M. P., Vanhoutte, K. & Vyverman, W. 2006. First record of the tropical invasive alga Compsopogon coeruleus (Balbis) Montagne (Rhodophyta) in Flanders (Belgium). In Ognjanova-Rumenova, N. & Manoylov, K. (Eds.) Advances in Phycological Studies. PENSOFT Publishers & University Publishing House, Sofia-Moscow, pp. 203-212.
  82. Szymanska, H. & Krupinska, I. 1983. The finding of Compsopogon coeruleus (Balbis) Montagne in Poland. Acta Soc. Bot. Pol. 52:101-103. https://doi.org/10.5586/asbp.1983.011
  83. Tauscher, L. 2012. Outdoors record of Compsopogon Montagne in Bory et Durieaux, 1846 in the River Main near Grosskrotzenburg (Hesse, Germany). Lauterbornia 74: 135-139.
  84. The Global Biodiversity Information Facility. 2022. Available from: https://www.gbif.org. Accessed Oct 29, 2022.
  85. The New York Botanical Garden, C. V. Starr Virtual Herbarium. 2022. Available from: http://sweetgum.nybg.org/science/vh. Accessed Oct 29, 2022.
  86. Tomas, P., Moreno, J. L., Aboal, M., Oscoz, J., Duran, C., Navarro, P. & Elbaile, A. 2013. Distribucion y ecologia de algunas especies de rodofitos (Rhodophyta) en la cuenca del rio Ebro. Limnetica 32:61-70.
  87. Tomas, Q. X. 1981. Thorea ramosissima en un canal del litoral valenciano. Folia Bot. Misc. 2:71-74.
  88. Tomas, Q. X. 1988. Diatomeas de las aguas epicontinentales saladas del litoral mediterraneo de la peninsula iberica. Ph.D. dissertation. En la Universitat de Barcelona, Barcelona, Spain.
  89. Tomas, X., Lopez, P., Margalef-Mir, R. & Comin, F. A. 1980. Distribution and ecology of Compsopogon coeruleus (Balbis) Montagne (Rhodophyta, Bangiophycideae) in eastern Spain. Cryptogam. Algol. 1:179-186.
  90. Trzebny, A., Slodkowicz-Kowalska, A., Becnel, J. J., Sanscrainte, N. & Dabert, M. 2020. A new method of metabarcoding Microsporidia and their hosts reveals high levels of microsporidian infections in mosquitoes (Culicidae). Mol. Ecol. Resour. 20:1486-1504. https://doi.org/10.1111/1755-0998.13205
  91. Weiss, F. E. & Murray, H. 1909. On the occurrence and distribution of some alien aquatic plants in the Reddish Canal. Mem. Proc. Manchester Lit. Philos. Soc. 54:1-8.
  92. Wilk-Wozniak, E. & Najberek, K. 2013. Towards clarifying the presence of alien algae in inland waters: can we predict places of their occurrence? Biologia 68:838-844. https://doi.org/10.2478/s11756-013-0221-3
  93. World Register of Introduced Marine Species. 2022. Available from: http://www.marinespecies.org/introduced/index.php. Accessed Oct 29, 2022.
  94. Woyda-Ploszczyca, A. M. & Rybak, A. S. 2021. How can the commercial potential of microalgae from the Dunaliella genus be improved? The importance of nucleotide metabolism with a focus on nucleoside diphosphate kinase (NDPK). Algal Res. 60:102474.
  95. Zakova, Z., Pum, M., Sedlacek, P., Hindak, F. & Mlejnkova, H. 2015. Occurrence of the red alga from the genus Compsopogon (Rhodophyta) in the Pulkau/Pulkava River (Austria) and in the Thaya/Dyje River (Czech Republic). In Radkova, V. & Bojkova, J. (Eds.) XVII. Konference Ceske Limnologicke Spolecnosti a Slovenskej Limnologickej Spolocnosti "Voda - Vec Verejna": Sbornik Prispevku. Masarykova Univerzita, Mikulov, Brno, pp. 176-180.
  96. Zakova, Z., Pum, M., Sedlacek, P., Mlejnkova, H. & Hindak, F. 2013. New records of Compsopogon aeruginosus (Rhodophyta) in rivers of central Europe. Oceanol. Hydrobiol. Stud. 42:412-419. https://doi.org/10.2478/s13545-013-0097-4
  97. Zdanowski, B. 1994. Long-term changes of phosphorus and nitrogen content and of trophic status in heated Konin lakes. Arch. Pol. Fish. 2:179-191.
  98. Zdanowski, B., Napiorkowska-Krzebietke, A., Stawecki, K., Swiatecki, A., Babko, R., Bogacka-Kapusta, E., Czarnecki, B. & Kapusta, A. 2020. Heated Konin Lakes: structure, functioning, and succession. In Korzeniewska, E. & Harnisz, M. (Eds.) Polish River Basins and Lakes, Part 1. The Handbook of Environmental Chemistry, Vol. 86. Springer, Chan, pp. 321-349.
  99. Zdanowski, B. & Prusik, S. 1994. Temperature-oxygen relations and chemical composition of water in heated Konin lakes. Fish. Aquat. Life 2:161-178.
  100. Zhan, S. H., Hsieh, T.-Y., Yeh, L.-W., Kuo, T.-C., Suda, S. & Liu, S.-L. 2021. Hidden introductions of freshwater red algae via the aquarium trade exposed by DNA barcodes. Environ. DNA 3:481-491. https://doi.org/10.1002/edn3.139