DOI QR코드

DOI QR Code

Heat and mass transfer processes at the most heat-stressed areas of the surface of the descent module

  • Oleg A., Pashkov (Moscow Aviation Institute (National Research University)) ;
  • Boris A., Garibyan (Moscow Aviation Institute (National Research University))
  • Received : 2022.06.17
  • Accepted : 2022.11.07
  • Published : 2022.11.25

Abstract

The study presents the results of the research of heat and heat exchange processes on the heat-stressed elements of the structure of an advanced TsAGI descent vehicle. The studies were carried out using a mathematical model based on solving discrete analogs of continuum mechanics equations. Conclusions were drawn about the correctness of the model and the dependence of the intensity of heat and mass transfer processes on the most heat-stressed sections of the apparatus surface on its geometry and the catalytic activity of the surface.

Keywords

References

  1. Astapov, A.N. and Pogodin, V.A. (2021), "Change in the integral pore size in CCCM during low-temperature oxidation", Russian Metallurgy (Metally), 2021(12), 1529-1533. https://doi.org/10.1134/S0036029521120041.
  2. Astapov, A.N., Lifanov, I.P. and Prokofiev, M.V. (2019), "High-temperature interaction in the ZrSi2-ZrSiO4 system and its mechanism", Russian Metallurgy (Metally), 6, 640-646. https://doi.org/10.1134/S0036029519060065.
  3. Blottner, F.G., Johnson, M. and Ellis, M. (1971), Chemically Reacting Viscous Flow Program for MultiComponent Gas Mixtures, Sandia Laboratories, Albuquerque, New Mexico, US.
  4. Bobylev, A.V., Vaganov, A.V., Dmitriev, V.G.E., Zadonsky, S.M., Kireev, A.Y., Skuratov, A.S., ... & Yaroshevsky, V.A. (2010), "Development of aeroshape and investigation of small-sized winged re-entry vehicle aerothermodynamic characteristics", TsAGI Sci. J., 40, 279-298. https://doi.org/10.1615/TsAGISciJ.v40.i3.10.
  5. Bulychev, N.A. (2019a), "On the hydrogen production during the discharge in a two-phase vapor-liquid flow", Bull. Lebedev Phys. Inst., 46(7), 219-221. https://doi.org/10.3103/S1068335619070029.
  6. Bulychev, N.A. (2019b), "Hydrogen production in acousto-plasma discharge in a liquid-phase medium flow", Int. J. Hydrogen Energy, 44(57), 29899-29902. https://doi.org/10.1016/j.ijhydene.2019.09.160.
  7. Bulychev, N.A. (2019c), "Experimental studies on hydrogen production in plasma discharge in a liquidphase medium flow", Int. J. Hydrogen Energy, 44(57), 29933-29936. https://doi.org/10.1016/j.ijhydene.2019.09.177.
  8. Bulychev, N.A. (2021d), "Obtaining of nanosized materials in plasma discharges and ultrasonic cavitation", High Temperat., 59(4), 600-633.
  9. Bulychev, N.A. (2021e), "Preparation of stable suspensions of ZnO nanoparticles with ultrasonically assisted low-temperature plasma", Nanosci. Technol., 12(3), 91-97. https://doi.org/10.1615/NanoSciTechnolIntJ.2021038033.
  10. Bulychev, N.A. (2022f), "Acoustoplasma synthesis of silver nanoparticles with antibacterial properties", Biophys. J., 121(3), 427a. https://doi.org/10.1016/j.bpj.2021.11.649.
  11. Bulychev, N.A. (2022g), "Study of interaction of surface-active polymers with ZnO nanoparticles synthesized in ultrasonically assisted plasma discharge", Nanosci. Technol., 13(1), 55-65. https://doi.org/10.1615/NanoSciTechnolIntJ.2021038100.
  12. Bulychev, N.A. (2022h), "Obtaining of gaseous hydrogen and silver nanoparticles by decomposition of hydrocarbons in ultrasonically stimulated low-temperature plasma", Int. J. Hydrogen Energy, 47(50), 21323-21328. https://doi.org/10.1016/j.ijhydene.2022.04.288.
  13. Bulychev, N.A. (2022i), "Synthesis of gaseous hydrogen and nanoparticles of silicon and silica by pyrolysis of tetraethoxysilane in an electric discharge under the ultrasonic action", Int. J. Hydrogen Energy, 47(84), 35581-35587. https://doi.org/10.1016/j.ijhydene.2022.08.163.
  14. Bulychev, N.A. and Burova, A.Y. (2022), "Unerroric of control of mutual compliance of the efficiency of hydrogen engines of unmanned vehicles in the conditions of mass production", Int. J. Hydrogen Energy, 47(63), 26789-26797. https://doi.org/10.1016/j.ijhydene.2022.06.078.
  15. Bulychev, N.A. and Ivanov, A.V. (2019a), "Effect of vibration on structure and properties of polymeric membranes", Int. J. Nanotechnol., 16(6/7/8/9/10), 334-343. https://doi.org/10.1504/IJNT.2019.106609.
  16. Bulychev, N.A. and Ivanov, A.V. (2019b), "Nanostructure of organic-inorganic composite materials based on polymer hydrogels", Int. J. Nanotechnol., 16(6/7/8/9/10), 344-355. https://doi.org/10.1504/IJNT.2019.106610.
  17. Bulychev, N.A. and Ivanov, A.V. (2019c), "Study of nanostructure of polymer adsorption layers on the particles surface of titanium dioxide", Int. J. Nanotechnol., 16(6/7/8/9/10), 356-365. https://doi.org/10.1504/IJNT.2019.106611.
  18. Bulychev, N.A. and Kolesnik, S.A. (2022), "Reinforcement of polymer composite materials by titanium dioxide nanoparticles synthesized in plasma discharge under ultrasonic cavitation", IOP Conf. Proc., 2231, 012012.
  19. Bulychev, N.A. and Rabinskiy, L.N. (2019a), "Ceramic nanostructures obtained by acoustoplasma technique", Nanosci. Technol., 10(3), 279-286. https://doi.org/10.1615/NanoSciTechnolIntJ.2019031161.
  20. Bulychev, N.A. and Rabinskiy, L.N. (2019b), "Surface modification of titanium dioxide nanoparticles with acrylic acid/isobutylene copolymer under ultrasonic treatment", Periodico Tche Quimica, 16(32), 338-344.
  21. Burova, A.Y. (2021), "Concept of multistage discrete fourier transform without performing multiplications", J. Phys.: Conf. Ser., 1889(2), 022003.
  22. Butusova, O.A. (2020a), "Adsorption behaviour of ethylhydroxyethyl cellulose on the surface of microparticles of titanium and ferrous oxides", Int. J. Pharmaceut. Res., 12(2), 1156-1159.
  23. Butusova, O.A. (2020b), "Stabilization of carbon microparticles by high-molecular surfactants", Int. J. Pharmaceut. Res., 12(2), 1147-1151.
  24. Butusova, O.A. (2020c), "Surface modification of titanium dioxide microparticles under ultrasonic treatment", Int. J. Pharmaceut. Res., 12(4), 2292-2296.
  25. Butusova, O.A. (2020d), "Vinyl ether copolymers as stabilizers of carbon black suspensions", Int. J. Pharmaceut. Res., 12(2), 1152-1155.
  26. Dorrance, W.H. (2017), Viscous Hypersonic Flow. Theory of Reacting Hypersonic Boundary Layers, Dover Publications, Inc., New York, US.
  27. Fay, J. and Riddell, F. (1958), "Theory of stagnation point heat transfer in dissociated air", J. Aeronaut. Sci, 25(2), 73-85. https://doi.org/10.2514/8.7517.
  28. Formalev, V.F. and Kolesnik, S.A. (2007), "Conjugate heat transfer between wall gasdynamic flows and anisotropic bodies", High Temp., 45, 76-84. https://doi.org/10.1134/S0018151X07010105.
  29. Formalev, V.F. and Kolesnik, S.A. (2019a), Mathematical Modeling of Coupled Heat Transfer Between Viscous Gas-Dynamic Flows and Anisotropic Bodies, Lenand, Moscow, Russia.
  30. Formalev, V.F. and Kolesnik, S.A. (2019b), "On thermal solitons during wave heat transfer in restricted areas", High Temperat., 57(4), 498-502. https://doi.org/10.1134/S0018151X19040047.
  31. Formalev, V.F., Bulychev, N.A., Kolesnik, S.A. and Kazaryan, M.A. (2019a), "Thermal state of the package of cooled gas-dynamic microlasers", Proc. SPIE-Int. Soc. Opt. Eng., 11322, 113221B. https://doi.org/10.1117/12.2550771.
  32. Formalev, V.F., Bulychev, N.A., Kuznetsova, E.L. and Kolesnik, S.A. (2020a), "The thermal state of a packet of cooled microrocket gas-dynamic lasers", Tech. Phys. Lett., 46(3), 245-248. https://doi.org/10.1134/S1063785020030074.
  33. Formalev, V.F., Kartashov, E.M. and Kolesnik, S.A. (2019b), "Simulation of nonequilibrium heat transfer in an anisotropic semispace under the action of a point heat source", J. Eng. Phys. Thermophys., 92(6), 1537-1547. https://doi.org/10.1007/s10891-019-02074-7.
  34. Formalev, V.F., Kartashov, E.M. and Kolesnik, S.A. (2020b), "On the dynamics of motion and reflection of temperature solitons in wave heat transfer in limited regions", J. Eng. Phys. Thermophys., 93(1), 10-15. https://doi.org/10.1007/s10891-020-02085-9.
  35. Formalev, V.F., Kolesnik, S.A. and Garibyan, B.A. (2020c), "Analytical solution of the problem of conjugate heat transfer between a gasdynamic boundary layer and anisotropic strip", Herald Bauman Moscow State Tech. Univ., Ser. Nat. Sci., 5(92), 44-59.
  36. Formalev, V.F., Kolesnik, S.A. and Garibyan, B.A. (2022), "Mathematical modeling of heat and mass transfer during aerodynamic heating of the nose parts of hypersonic aircraft", Herald Bauman Moscow State Tech. Univ., Ser. Nat. Sci., 1(100), 107-121.
  37. Formalev, V.F., Kolesnik, S.A. and Kuznetsova, E.L. (2009), "The effect of longitudinal nonisothermality on conjugate heat transfer between wall gasdynamic flows and blunt anisotropic bodies", High Temp., 47, 228. https://doi.org/10.1134/S0018151X09020138.
  38. Formalev, V.F., Kolesnik, S.A. and Kuznetsova, E.L. (2019c), "Approximate analytical solution of the problem of conjugate heat transfer between the boundary layer and the anisotropic strip", Periodico Tche Quimica, 16(32), 572-582.
  39. Formalev, V.F., Kolesnik, S.A. and Kuznetsova, E.L. (2019d), "Effect of components of the thermal conductivity tensor of heat-protection material on the value of heat fluxes from the Gasdynamic boundary layer", High Temp., 57, 66-71. https://doi.org/10.1134/S0018151X19010085.
  40. Formalev, V.F., Kolesnik, S.A. and Kuznetsova, E.L. (2019e), "Mathematical modeling of a new method of thermal protection based on the injection of special coolants", Periodico Tche Quimica, 16(32), 598-607.
  41. Goncharenko, V., Mikhaylov, Y. and Kartushina, N. (2022), "Pattern recognition techniques for classifying aeroballistic flying vehicle paths", Neur. Comput. Appl., 34(5), 4033-4045. https://doi.org/10.1007/s00521-021-06662-8.
  42. Hein, T.Z., Garibyan, B.A., Vakhneev, S.N., Tushavina, O.V. and Formalev, V.F. (2020), "Analytical study of joint heat transfer between a gas-dynamic boundary layer and an anisotropic strip", INCAS Bull., 12, 233-243. https://doi.org/10.13111/2066-8201.2020.12.s.22
  43. Ioni, Y.V. (2020a), "Effect of ultrasonic treatment on properties of aqueous dispersions of inorganic and organic particles in presence of water-soluble polymers", Int. J. Pharmaceut. Res., 12(4), 3440-3442.
  44. Ioni, Y.V. (2020b), "Nanoparticles of noble metals on the surface of graphene flakes", Periodico Tche Quimica, 17(36), 1199-1211.
  45. Ioni, Y.V. (2020c), "Synthesis of metal oxide nanoparticles and formation of nanostructured layers on surfaces under ultrasonic vibrations", Int. J. Pharmaceut. Res., 12(4), 3432-3435.
  46. Ioni, Y.V. and Butusova, O.A. (2021a), "Preparation of polymer composite material with Fe2O3 nanoparticles synthesized with low-temperature plasma under ultrasonic action", AIP Conf. Proc., 2402, 020035. https://doi.org/10.1063/5.0071390.
  47. Ioni, Y.V. and Butusova, O.A. (2021b), "Synthesis of Al2O3 nanoparticles for their subsequent use as fillers of polymer composite materials", AIP Conf. Proc., 2402, 020036. https://doi.org/10.1063/5.0071387.
  48. Kalugina, G.A. and Ryapukhin, A.V. (2021), "Impact of the 2020 pandemic on Russian aviation", Russian Eng. Res., 41(7), 627-630. https://doi.org/10.3103/S1068798X21070133.
  49. Kaptakov, M.O. (2020a), "Catalytic desulfuration of oil products under ultrasonic treatment", Int. J. Pharmaceut. Res., 12(2), 1838-1843.
  50. Kaptakov, M.O. (2020b), "Effect of ultrasonic treatment on stability of TiO2 aqueous dispersions in presence of water-soluble polymers", Int. J. Pharmaceut. Res., 12(2), 1821-1824.
  51. Kaptakov, M.O. (2020c), "Enhancement of quality of oil products under ultrasonic treatment", Int. J. Pharmaceut. Res., 12(2), 1851-1855.
  52. Kaptakov, M.O. (2021), "Synthesis and characterization of polymer composite materials based on polyethylene and CuO nanoparticles", AIP Conf. Proc., 2402, 020027. https://doi.org/10.1063/5.0071381.
  53. Kaptakov, M.O., Pegachkova, E.A. and Makarenko, A.V. (2021), "Physical and mechanical properties of composites polyethylene-CuO nanoparticles", AIP Conf. Proc., 2402, 020038. https://doi.org/10.1063/5.0071378.
  54. Kolesnik, S.A. (2021a), "Investigation of mechanical properties of polymer composite material based on polyethylene with Fe2O3 nanoparticles", AIP Conf. Proc., 2402, 020037. https://doi.org/10.1063/5.0071380.
  55. Kolesnik, S.A. (2021b), "Mechanical properties of polyethylene/Al2O3 nanoparticles composite material", AIP Conf. Proc., 2402, 020026. https://doi.org/10.1063/5.0071384.
  56. Kolesnik, S.A. and Bulychev, N.A. (2020), "Numerical analytic method for solving the inverse coefficient problem of heat conduction in anisotropic half-space", J. Phys.: Conf. Ser., 1474(1), 012024. https://doi.org/10.1088/1742-6596/1474/1/012024.
  57. Kolesnik, S.A., Bulychev, N.A., Rabinskiy, L.N. and Kazaryan, M.A. (2019), "Mathematical modeling and experimental studies of thermal protection of composite materials under high-intensity effects of laser radiation", Proc. SPIE-Int. Soc. Opt. Eng., 11322, 113221R. https://doi.org/10.1117/12.2553955.
  58. Kovalev, V.L. (2002), Heterogeneous Catalytic Processes in Aerothermodynamics, Fizmatlit, Moscow, Russia.
  59. Kurchatov, I., Bulychev, N., Kolesnik, S. and Muravev, E. (2019b), "Application of the direct matrix analysis method for calculating the parameters of the luminescence spectra of the iron ion in zinc sulfide crystals", AIP Conf. Proc., 2181, 020015. https://doi.org/10.1063/1.5135675.
  60. Kurchatov, I.S., Bulychev, N.A. and Kolesnik, S.A. (2019a), "Obtaining spectral characteristics of semiconductors of AIIBVI type alloyed with iron ions using direct matrix analysis", Int. J. Recent Technol. Eng., 8(3), 8328-8330.
  61. Landau, L.D. and Lifshitz, E.M. (1980), Statistical Physics, Pergamon Press, Oxford, UK.
  62. Lifanov, I.P., Astapov, A.N. and Terentieva, V.S. (2020), "Deposition of heat-resistant coatings based on the ZrSi2-MoSi2-ZrB2 system for protection of non-metallic composite materials in high-speed highenthalpy gas flows", J. Phys.: Conf. Ser., 1713(1), 012025. https://doi.org/10.1088/1742-6596/1713/1/012025.
  63. Lifanov, I.P., Yurishcheva, A.A. and Astapov, A.N. (2019), "High-temperature protective coatings on carbon composites", Russian Eng. Res., 39(9), 804-808. https://doi.org/10.3103/S1068798X19090132.
  64. McBride, B.J., Zehe M.J. and Gordon, S. (2002), NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species, National Aeronautics and Space Administration John H. Glenn Research Center at Lewis Field Cleveland, US.
  65. Millat, J., Dymond, J.H. and Nieto de Castro, C. A. (1996), Transport Properties of Fluids: Their Correlation, Prediction and Estimation, Cambridge University Press, Cambridge, UK.
  66. Perchenok, A.V., Suvorova, E.V., Farmakovskaya, A.A. and Kohlert V. (2021b), "Stabilization of aqueous dispersions of inorganic microparticles under mechanical activation", WSEAS Trans. Appl. Theor. Mech., 16, 127-133. https://doi.org/10.37394/232011.2021.16.13
  67. Perchenok, A.V., Suvorova, E.V., Farmakovskaya, A.A. and Kohlert, V. (2021a), "Application of vinyl ether copolymers for surface modification of carbon black", Int. J. Circuit., Syst. Signal Pr., 15, 1414-1420.
  68. Pogodin, V.A., Astapov, A.N. and Rabinskiy, L.N. (2020), "CCCM specific surface estimation in process of low-temperature oxidation", Periodico Tche Quimica, 17(34), 793-802.
  69. Pogodin, V.A., Rabinskii, L.N. and Sitnikov, S.A. (2019), "3D printing of components for the gas-discharge chamber of electric rocket engines", Russian Eng. Res., 39(9), 797-799. https://doi.org/10.3103/S1068798X19090156.
  70. Rabinskiy, L.N. and Sitnikov, S.A. (2018), "Development of technologies for obtaining composite material based on silicone binder for its further use in space electric rocket engines", Periodico Tche Quimica, 15(1), 390-395.
  71. Radaev, S. (2021a), "Design calculations of the limiting characteristics of heat pipes for cooling active phased antenna arrays", WSEAS Trans. Appl. Theor. Mech., 16, 142-149. https://doi.org/10.37394/232011.2021.16.15
  72. Radaev, S. (2021b), "Mathematical modeling of heat and mass transfer in heat pipes in a one-dimensional formulation when cooling active phased antenna arrays", Int. J. Mech., 15, 196-203. https://doi.org/10.46300/9104.2021.15.23
  73. Radaev, S. (2021c), "Numerical and analytical modeling of permanent deformations in panels made of nanomodified carbon fiber reinforced plastic with asymmetric packing", Int. J. Mech., 15, 172-180. https://doi.org/10.46300/9104.2021.15.20
  74. Scalabrin, L.C. (2007), Numerical Simulation of Weakly Ionized Hypersonic Flow over Reentry Capsules. University of Michigan, Michigan, US.
  75. Sun, Y., Kolesnik, S.A. and Kuznetsova, E.L. (2020), "Mathematical modeling of coupled heat transfer on cooled gas turbine blades", INCAS Bull., 12, 193-200. https://doi.org/10.13111/2066-8201.2020.12.s.18
  76. Tarasova, A.N. (2020a), "Effect of reagent concentrations on equilibria in water-soluble complexes", Int. J. Pharmaceut. Res., 12(2), 1169-1172.
  77. Tarasova, A.N. (2020b), "Effect of vibration on physical properties of polymeric latexes", Int. J. Pharmaceut. Res., 12(2), 1173-1180.
  78. Tarasova, A.N. (2020c), "Vibration-based method for mechanochemical coating metallic surfaces", Int. J. Pharmaceut. Res., 12(2), 1160-1168.
  79. Vaganov, A.V., Drozdov, S., Kosykh, A.P., Nersesov, G.G., Chelysheva, I.F. and Yumashev, V.L. (2009), "Numerical simulation of aerodynamics of winged reentry space vehicle", TsAGI Sci. J., 40, 131-149. https://doi.org/10.1615/TsAGISciJ.v40.i2.10.