DOI QR코드

DOI QR Code

Finite element modeling of RC columns made of inferior concrete mix strengthened with CFRP sheets

  • Khaled A. Alawi, Al-Sodani (Department of Civil Engineering, University of Hafr Al-Batin) ;
  • Muhammad Kalimur ,Rahman (Interdisciplinary Research Center for Construction and Building Materials, KFUPM) ;
  • Mohammed A., Al-Osta (Interdisciplinary Research Center for Construction and Building Materials, KFUPM) ;
  • Omar S. Baghabra, Al-Amoudi (Interdisciplinary Research Center for Construction and Building Materials, KFUPM)
  • 투고 : 2021.09.04
  • 심사 : 2022.11.03
  • 발행 : 2022.11.25

초록

Reinforced concrete (RC) structures with low-strength RC columns are rampant in several countries, especially those constructed during the early 1960s and 1970s. The weakness of these structures due to overloading or some natural disasters such as earthquakes and building age effects are some of the main reasons to collapse, particularly with the scarcity of data on the impact of aspect ratio and corner radius on the confinement effectiveness. Hence, it is crucial to investigate if these columns (with different aspect ratios) can be made safe by strengthening them with carbon fiber-reinforced polymers (CFRP) sheets. Therefore, experimental and numerical studies of CFRP-strengthened low-strength reinforced concrete short rectangular, square, and circular columns were studied. In this investigation, a total of 6 columns divided into three sets were evaluated. The first set had two circular cross-sectional columns, the second set had two square cross-section columns, and the third set has two rectangular cross-section columns. Furthermore, FEM validation has been conducted for some of the experimental results obtained from the literature. The experimental results revealed that the confinement equations for RC columns as per both CSA and ACI codes could give incorrect results for low-strength concrete. The control specimen (unstrengthened ones) displayed that both ACI and CSA equations overestimate the ultimate strength of low-strength RC columns by order of extent. For strengthened columns with CFRP, the code equations of CSA and ACI code overestimate the maximum strength by around 6 to 13% and 23 to 29%, respectively, depending on the cross-section of the column (i.e., square, rectangular, or circular). Results of finite element models (FEMs) showed that increasing the layer number of new commonly CFRP type (B) from one to 3 for circular columns can increase the column's ultimate loads by around eight times compared to unjacketed columns. However, in the case of strengthened square and rectangular columns with CFRP, the increase of the ultimate loads of columns can reach up to six times and two times, respectively.

키워드

과제정보

The authors would like to express gratitude and appreciation to the Department of Civil Engineering at the University of Hafr Al-Batin (UHB) and the Department of Civil and Environmental Engineering at King Fahd University of Petroleum and Minerals (KFUPM).

참고문헌

  1. Achillopoulou, D.V., Arvanitidou, K.C. and Karabinis, A.I. (2015), "Repaired concrete columns with fiber reinforced thixotropic mortar: Experimental & FEA approach", Comput. Concrete, 15(1), 73-88. https://doi.org/10.12989/cac.2015.15.1.073.
  2. Al-Besher, Z.I. (2013), "Seismic hazard assessment for Tabuk city, NW Saudi Arabia", J. Geosci. Environ. Prot., 1(3), 7-11. https://doi.org/10.4236/gep.2013.13002.
  3. Al-Salloum, Y.A. (2007), "Influence of edge sharpness on the strength of square concrete columns confined with FRP composite laminates", Compos. B. Eng., 38(5-6), 640-650. https://doi.org/10.1016/j.compositesb.2006.06.019.
  4. Almassri, B. and Halahla, A.M. (2020), "Corroded RC beam repaired in flexure using NSM CFRP rod and an external steel plate", Struct., 27, 343-351. https://doi.org/10.1016/j.istruc.2020.05.054.
  5. Alsaad, A. and Hassan, G. (2017), "Utilization of CFRP for strengthening RC columns in marine environment", Case Stud. Constr. Mater., 7, 30-35. https://doi.org/10.1016/j.cscm.2017.05.002.
  6. Amran, Y.H.M., Alyousef, R., Rashid, R.S., Alabduljabbar, H. and Hung, C.C. (2018), "Properties and applications of FRP in strengthening RC structures: A review", Struct., 16, 208-238. https://doi.org/10.1016/j.istruc.2018.09.008.
  7. Antonius, A. and Imran, I. (2012), "Experimental study of confined low-, medium- and high-strength concrete subjected to concentric compression", J. Eng. Technol. Sci., 44(3), 252-269. https://doi.org/10.5614/itbj.eng.sci.2012.44.3.4.
  8. Bailey, C.G. and Yaqub, M. (2012), "Seismic strengthening of shear critical post-heated circular concrete columns wrapped with FRP composite jackets", Compos. Struct., 94(3), 851-864. https://doi.org/10.1016/j.compstruct.2011.09.004.
  9. Berradia, M. and Kassoul, A. (2017), "Combined effect of CFRPTSR confinement on circular reinforced concrete columns", Comput. Concrete, 19(1), 41-49. https://doi.org/10.12989/cac.2017.19.1.041.
  10. Camoes, A. and Martins, F.F. (2017), "Compressive strength prediction of CFRP confined concrete using data mining techniques", Comput. Concrete, 19(3), 233-241. https://doi.org/10.12989/cac.2017.19.3.233.
  11. Chaallal, O., Shahawy, M. and Hassan, M. (2003), "Performance of axially loaded short rectangular columns strengthened with carbon fiber-reinforced polymer wrapping", J. Compos. Constr., 7(3), 200-208. https://doi.org/10.1061/(asce)1090-0268(2003)7:3(200).
  12. Chastre, C. and Silva, M.A. (2010), "Monotonic axial behavior and modelling of RC circular columns confined with CFRP", Eng. Struct., 32(8), 2268-2277. https://doi.org/10.1016/j.engstruct.2010.04.001.
  13. Cheng, D. and Yang, Y. (2017), "Design method for concrete columns strengthened with prestressed CFRP sheets", Constr. Build. Mater., 151, 331-344. https://doi.org/10.1016/j.conbuildmat.2017.06.104.
  14. Debaiky, A.S., Green, M.F. and Hope, B.B. (2002), "Carbon fiber-reinforced polymer wraps for corrosion control and rehabilitation of reinforced concrete columns", Mater. J., 99(2), 129-137. https://doi.org/10.14359/11704.
  15. Elci, H. (2020), "Seismic strengthening of improperly repaired reinforced concrete columns using CFRP confinement", Struct., 28, 266-275. https://doi.org/10.1016/j.istruc.2020.08.072.
  16. Ghaemdoust, M.R., Narmashiri, K. and Yousefi, O. (2016), "Structural behaviors of deficient steel SHS short columns strengthened using CFRP", Constr. Build. Mater., 126, 1002-1011. https://doi.org/10.1016/j.conbuildmat.2016.09.099.
  17. Harajli, M.H., Tabet, C., Sadek, S., Mabsout, M., Moukaddam, S. and Abo, M. (1994), "Seismic hazard assessment of lebanon: Zoning maps, and structural seismic design regulations", Submitted to the Directorate of Urbanism, Ministry of Public Works, Beirut, Lebanon 195.
  18. Harajli, M., Sadek, S. and Asbahan, R. (2002), "Evaluation of the seismic hazard of Lebanon", J. Seismol., 6(2), 257-277. https://doi.org/10.1023/A:1015687602473.
  19. Harajli, M.H., Hantouche, E. and Soudki, K. (2006), "Stress-strain model for fiber-reinforced polymer jacketed concrete columns", Struct. J., 103(5), 672-682. https://doi.org/10.14359/16919.
  20. Harajli, M.H. and Rteil, A.A. (2004), "Effect of confinement using fiber-reinforced polymer or fiber-reinforced concrete on seismic performance of gravity load-designed columns", Struct. J., 101(1), 47-56.
  21. Juntanalikit, P., Jirawattanasomkul, T. and Pimanmas, A. (2016), "Experimental and numerical study of strengthening non-ductile RC columns with and without lap splice by carbon fiber reinforced polymer (CFRP) jacketing", Eng. Struct., 125, 400-418. https://doi.org/10.1016/j.engstruct.2016.07.019.
  22. Kalogeropoulos, G.I. and Tsonos, A.G. (2014), "Effectiveness of R/C jacketing of substandard R/C columns with short lap splices", Struct. Monit. Maint., 1(3), 273-292. https://doi.org/10.12989/smm.2014.1.3.273.
  23. Kalogeropoulos, G. and Tsonos, A.D. (2020), "Cyclic performance of RC columns with inadequate lap splices strengthened with CFRP jackets", Fibers, 8(6), 1-19. https://doi.org/10.3390/fib8060039.
  24. Karayannis, C.G. and Golias, E. (2021), "Strengthening of deficient RC joints with diagonally placed external C-FRP ropes", Earthq. Struct., 20(1), 123-132. https://doi.org/10.12989/eas.2021.20.1.123.
  25. Karimian, M., Narmashiri, K., Shahraki, M. and Yousefi, O. (2017), "Structural behaviors of deficient steel CHS short columns strengthened using CFRP", J. Constr. Steel Res., 138, 555-564. https://doi.org/10.1016/j.jcsr.2017.07.021.
  26. Kashi, A., Ramezanianpour, A.A. and Moodi, F. (2017), "Experimental study on durability of strengthened corroded RC columns with FRP Sheets in tidal zone of marine environment", Comput. Concrete, 19(4), 339-346. http://doi.org/10.12989/cac.2017.19.4.339.
  27. Lu, C.L., Xiao, Y.P., Wang, Q. and Zhu, W.X. (2020), "Study on axial compressive properties of RC square columns strengthened with prestressed CFRP sheets", Struct., 27, 2011-2024. https://doi.org/10.1016/j.istruc.2020.07.033.
  28. Mander, J.B., Priestley, M.J.N. and Park, R. (1988a), "Observed stress-strain behavior of confined concrete", J. Struct. Eng., 114(8), 1827-1849. https://doi.org/10.1061/(asce)0733-9445(1988)114:8(1827).
  29. Mander, J.B., Priestley, M.J. and Park, R. (1988b), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(asce)0733-9445(1988)114:8(1804).
  30. Manual, I.D. (2001), "Strengthening reinforced concrete structures with externally-bonded fibre reinforced polymers", The Canadian Network of Centers of Excellence on Intelligent Sensing for Innovative Structures, ISIS Canada, University of Winnipeg, Manitoba, Canada.
  31. Nemecek, J., Padevet, P., Patzak, B. and Bittnar, Z. (2005), "Effect of transversal reinforcement in normal and high strength concrete columns", Mater. Struct., 38(7), 665. https://doi.org/10.1007/bf02484311.
  32. Ozbakkaloglu, T. and Oehlers, D.J. (2008), "Concrete-filled square and rectangular FRP tubes under axial compression", J. Compos. Constr., 12(4), 469-477. https://doi.org/10.1061/(asce)1090-0268(2008)12:4(469).
  33. Pacheco-Torgal, F., Melchers, R., Shi, X., De Belie, N., Van Tittelboom, K. and Perez, A.S. (2017), Eco-Efficient Repair and Rehabilitation of Concrete Infrastructures, Woodhead Publishing.
  34. Prota, A., Manfredi, G. and Cosenza, E. (2006), "Ultimate behavior of axially loaded RC wall-like columns confined with GFRP", Compos. B. Eng., 37(7-8), 670-678. https://doi.org/10.1016/j.compositesb.2006.01.005.
  35. Rodrigues, H., Furtado, A. and Arede, A. (2017), "Experimental evaluation of energy dissipation and viscous damping of repaired and strengthened RC columns with CFRP jacketing under biaxial load", Eng. Struct., 145, 162-175. https://doi.org/10.1016/j.engstruct.2017.05.021.
  36. Shehata, I.A., Carneiro, L.A. and Shehata, L.C. (2002), "Strength of short concrete columns confined with CFRP sheets", Mater. Struct., 35(1), 50-58. https://doi.org/10.1007/bf02482090.
  37. Shraideh, M.S. and Aboutaha, R.S. (2013), "Analysis of steel-GFRP reinforced concrete circular columns", Comput. Concrete, 11(4), 351-364. https://doi.org/10.12989/cac.2013.11.4.351.
  38. Sokolov, V., Zahran, H.M., Youssef, S.E.H., El-Hadidy, M. and Alraddadi, W.W. (2017), "Probabilistic seismic hazard assessment for Saudi Arabia using spatially smoothed seismicity and analysis of hazard uncertainty", Bull. Earthq. Eng., 15(7), 2695-2735. https://doi.org/10.1007/s10518-016-0075-5.
  39. Tayeh, B.A., Naja, M.A., Shihada, S. and Arafa, M. (2019), "Repairing and strengthening of damaged rc columns using thin concrete jacketing", Adv. Civil Eng., 2019, Article ID 2987412. https://doi.org/10.1155/2019/2987412.
  40. Tsonos, A.D.G., Kalogeropoulos, G.I., Iakovidis, P.E. and Konstantinidis, D. (2017), "Seismic retrofitting of pre-1970 RC bridge columns using innovative jackets", Int. J. Struct. Eng., 8(2), 133-147. https://doi.org/10.1504/ijstructe.2017.084631.
  41. Tsonos, A.G. (2014), "An innovative solution for strengthening of old R/C structures and for improving the FRP strengthening method", Struct. Monit. Maint., 1(3), 323-338. https://doi.org/10.12989/smm.2014.1.3.323.
  42. Vuggumudi, S. and Alagusundaramoorthy, P. (2018), "FRP strengthened RC rectangular columns under combined axial and lateral loading: Analytical study", Struct., 14, 88-94. https://doi.org/10.1016/j.istruc.2018.02.007.
  43. Wang, Z.B., Yu, Q. and Tao, Z. (2015), "Behaviour of CFRP externally-reinforced circular CFST members under combined tension and bending", J. Constr. Steel Res., 106, 122-137. https://doi.org/10.1016/j.jcsr.2014.12.007.
  44. Yaqub, M. and Bailey, C.G. (2011), "Repair of fire damaged circular reinforced concrete columns with FRP composites", Constr. Build. Mater., 25(1), 359-370. https://doi.org/10.1016/j.conbuildmat.2010.06.017.
  45. Yaqub, M. and Bailey, C.G. (2012), "Seismic performance of shear critical post-heated reinforced concrete square columns wrapped with FRP composites", Constr. Build. Mater., 34, 457-469. https://doi.org/10.1016/j.conbuildmat.2012.02.076.
  46. Yaqub, M., Bailey, C.G., Nedwell, P., Khan, Q.U.Z. and Javed, I. (2013), "Strength and stiffness of post-heated columns repaired with ferrocement and fibre reinforced polymer jackets", Compos. B. Eng., 44(1), 200-211. https://doi.org/10.1016/j.compositesb.2012.05.041.
  47. Yehia, S. (2015), "Behavior of low compressive strength short columns strengthened with external GFRP strips/jacket techniques", Int. J. Technol. Enhance. Emerg. Eng. Res. (IJTEEE), 3, 1-5.
  48. Yoddumrong, P., Rodsin, K. and Katawaethwarag, S. (2020), "Seismic strengthening of low-strength RC concrete columns using low-cost glass fiber reinforced polymers (GFRPs)", Case Stud. Constr. Mater., 13, 1-19. https://doi.org/10.1016/j.cscm.2020.e00383.