DOI QR코드

DOI QR Code

Optimal distribution of metallic energy dissipation devices in multi-story buildings via local search heuristics

  • Zongjing, Li (College of Civil and Transportation Engineering, Hohai University) ;
  • Ganping, Shu (School of Civil Engineering, Southeast University) ;
  • Zhen, Huang (School of Civil Engineering, Southeast University) ;
  • Jing, Cao (College of Civil and Transportation Engineering, Hohai University)
  • 투고 : 2022.03.09
  • 심사 : 2022.11.03
  • 발행 : 2022.11.25

초록

The metallic energy dissipation device (EDD) has been widely accepted as a useful tool for passive control of buildings against earthquakes. The distribution of metallic EDDs in a multi-story building may have significant influence on its seismic performance, which can be greatly enhanced if the distribution scheme is properly designed. This paper addresses the optimal distribution problem in the aim of achieving a desired level of performance using the minimum number of metallic EDDs. Five local search heuristic algorithms are proposed to solve the problem. Four base structures are presented as numerical examples to verify the proposed algorithms. It is indicated that the performance of different algorithms may vary when applied in different situations. Based on the results of the numerical verification, the recommended guidelines are finally proposed for choosing the appropriate algorithm in different occasions.

키워드

과제정보

This work is supported by the National Natural Science Foundation of China (Grant No. 52208163) and the Fundamental Research Funds for the Central Universities (Grant No. B200201023).

참고문헌

  1. Agrawal, A.K. and Yang, J.N. (1999), "Optimal placement of passive dampers on seismic and wind-excited buildings using combinatorial optimization", J. Intell. Mater. Syst. Struct., 10(12), 997-1014. https://doi.org/10.1106/YV3B-TP5HHWQ2-X1OK.
  2. Amini, F. and Ghaderi, P. (2013), "Hybridization of harmony search and ant colony optimization for optimal locating of structural dampers", Appl. Soft. Comput., 13(5), 2272-2280. https://doi.org/10.1016/j.asoc.2013.02.001.
  3. Briones, B. and Llera, J.C.D.L. (2014), "Analysis, design and testing of an hourglass-shaped copper energy dissipation device", Eng. Struct., 79, 309-321. https://doi.org/10.1016/j.engstruct.2014.07.006.
  4. Chan, R.W.K., Albermani, F. and Williams, M.S. (2009), "Evaluation of yielding shear panel device for passive energy dissipation", J. Constr. Steel Res., 65(2), 260-268. https://doi.org/10.1016/j.jcsr.2008.03.017.
  5. Caicedo, D., Lara-Valencia, L., Blandon, J. and Graciano, C. (2021), "Seismic response of high-rise buildings through metaheuristic-based optimization using tuned mass dampers and tuned mass dampers inerter", J. Build. Eng., 34, 101927. https://doi.org/10.1016/j.jobe.2020.101927.
  6. Durucan, C. and Dicleli, M. (2010), "Analytical study on seismic retrofitting of reinforced concrete buildings using steel braces with shear link", Eng. Struct., 32(10), 2995-3010. https://doi.org/10.1016/j.engstruct.2010.05.019.
  7. Gasparini, D.A. and Vanmarcke, E.H. (1976), "Simulated earthquake motions compatible with prescribed response spectra", Research Report No. R76-4; Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
  8. Haftka, R.T. and Adelman, H.M. (1985), "Selection of actuator locations for static shape control of large space structures by heuristic integer programming", Comput. Struct., 20(1-3), 575-582. https://doi.org/10.1016/0045-7949(85)90105-1.
  9. Huang, X. (2018), "Evaluation of genetic algorithms for the optimum distribution of viscous dampers in steel frames under strong earthquakes", Earthq. Struct., 14(3), 215-227. https://doi.org/10.12989/eas.2018.14.3.215.
  10. Kato, S. and Kim, Y.B. (2006), "A finite element parametric study on the mechanical properties of J-shaped steel hysteresis devices", J. Constr. Steel Res., 62, 802-11. https://doi.org/10.1016/j.jcsr.2005.11.014.
  11. Katsanos, E.I., Sextos, A.G. and Manolis, G.D. (2010), "Selection of earthquake ground motion records: A state-of-the-art review from a structural engineering perspective", Soil Dyn. Earthq. Eng., 30(4), 157-169. https://doi.org/10.1016/j.soildyn.2009.10.005.
  12. Kim, J. and An, S. (2017), "Optimal distribution of friction dampers for seismic retrofit of a reinforced concrete moment frame", Adv. Struct. Eng., 20(10), 1523-1539. https://doi.org/10.1177/1369433216683197.
  13. Kumar, P., Jangid, R.S. and Reddy, G.R. (2016), "Comparative performance of passive devices for piping system under seismic excitation", Nucl. Eng. Des., 298, 121-134. https://doi.org/10.1016/j.nucengdes.2015.11.019.
  14. Lara-Valencia, L.A., Caicedo, D. and Valencia-Gonzalez, Y.A. (2021), "Novel whale optimization algorithm for the design of tuned mass dampers under earthquake excitations", Appl. Sci., 11, 6172. https://doi.org/10.3390/app11136172.
  15. Milman, M.H. and Chu, C.C. (1994), "Optimization methods for passive damper placement and tuning", J. Guid. Control Dyn., 17(4), 848-856. https://doi.org/10.2514/3.21275.
  16. Rao, A.R.M. and Sivasubramanian, K. (2008), "Optimal placement of actuators for active vibration control of seismic excited tall buildings using a multiple start guided neighbourhood search (MSGNS) algorithm", J. Sound Vib., 311(1-2), 133-159. https://doi.org/10.1016/j.jsv.2007.08.031.
  17. Sahoo, D.R. and Rai, D.C. (2010), "Seismic strengthening of non-ductile reinforced concrete frames using aluminum shear links as energy-dissipation devices", Eng. Struct., 32(11), 3548-3557. https://doi.org/10.1016/j.engstruct.2010.07.023.
  18. Shih, M.H. and Sung, W.P. (2005), "A model for hysteretic behavior of rhombic low yield strength steel added damping and stiffness", Comput. Struct., 83(12-13), 895-908. https://doi.org/10.1016/j.compstruc.2004.11.012.
  19. Shu, G. and Li, Z. (2017), "Parametric identification of the Bouc-Wen model by a modified genetic algorithm: Application to evaluation of metallic dampers", Earthq. Struct., 13(4), 397-407. https://doi.org/10.12989/eas.2017.13.4.397.
  20. Sonmez, M., Aydin, E. and Karabork, T. (2013), "Using an artificial bee colony algorithm for the optimal placement of viscous dampers in planar building frames", Struct. Multidisc. Optim., 48(2), 395-409. https://doi.org/10.1007/s00158-013-0892-y.
  21. Tehranizadeh, M. (2001), "Passive energy dissipation device for typical steel frame building in Iran", Eng. Struct., 23(6), 643-655. https://doi.org/10.1016/S0141-0296(00)00082-1.
  22. Tsai, K.C., Chen, H.W., Hong, C.P. and Su, Y.E. (1993), "Design of steel triangular plate energy absorbers for seismic-resistant construction", Earthq. Spectra, 9(3), 505-528. https://doi.org/10.1193/1.1585727.
  23. Wen, Y.K. (1976), "Method for random vibration of hysteretic systems", J. Eng. Mech., 102(2), 249-263. https://doi.org/10.1061/JMCEA3.0002106.
  24. Whittle, J.K., Williams, M.S., Karavasilis, T.L. and Blakeborough, A. (2012), "A comparison of viscous damper placement methods for improving seismic building design", J. Earthq. Eng., 16(4), 540-560. https://doi.org/10.1080/13632469.2011.653864.
  25. Wongprasert, N. and Symans, M.D. (2004), "Application of a genetic algorithm for optimal damper distribution within the nonlinear seismic benchmark building", J. Eng. Mech., 130(4), 401-406. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(401).
  26. Wu, B., Ou, J.P. and Soong, T.T. (1997), "Optimal placement of energy dissipation devices for three-dimensional structures", Eng. Struct., 19(2), 113-125. https://doi.org/10.1016/S0141-0296(96)00034-X.
  27. Yucel, M., Bekdas, G., Nigdeli, S.M. and Sevgen, S. (2019), "Estimation of optimum tuned mass damper parameters via machine learning, J. Build. Eng., 26, 100847, https://doi.org/10.1016/j.jobe.2019.100847.
  28. Zhang, R.H. and Soong, T.T. (1992), "Seismic design of viscoelastic dampers for structural applications", J. Struct. Eng., 118(5), 1375-1392. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1375).