DOI QR코드

DOI QR Code

Experimental investigation of a frame retrofitted with carbon textile reinforced mortar

  • Sinan M., Cansunar (Faculty of Civil Engineering, Istanbul Technical University) ;
  • Kadir, Guler (Faculty of Civil Engineering, Istanbul Technical University)
  • Received : 2022.05.31
  • Accepted : 2022.11.16
  • Published : 2022.11.25

Abstract

The research investigates experimentally the effect of confinement on structural behavior at the ends of beam-column in reinforced concrete (RC) frames. In the experimental study, five specimens consisting of 1/3-scaled RC frames having single-bay, representing the traditional deficiencies of existing buildings constructed without receiving proper engineering service is investigated. The RC frame specimens were produced to represent most of the existing buildings in Turkey that have damage potential. To decrease the probable damage to the existing buildings exposed to earthquakes, the carbon Textile Reinforced Mortar (TRM) strengthening technique (fully wrapping) was used on the ends of the RC frame elements to increase the energy dissipation and deformation capacity. The specimens were tested under reversed cyclic lateral loading with constant axial loads. They were constructed satisfying the weak column-strong beam condition and consisting of low-strength concrete, such as compressive strength of 15 MPa. The test results were compared and evaluated considering stiffness, strength, energy dissipation capacity, structural damping, ductility, and damage propagation in detail. Comprehensive investigations of these experimental results reveal that the strengthening of a brittle frame with fully-TRM wrapping with non-anchored was effective in increasing the stiffness, ductility, and energy dissipation capacities of RC bare frames. It was also observed that the frame-only-retrofitting with an infill wall is not enough to increase the ductility capacity. In this case, both the frame and infill wall must be retrofitted with TRM composite to increase the stiffness, lateral load carrying, ductility and energy dissipation capacities of RC frames. The presented strengthening method can be an alternative strengthening technique to enhance the seismic performance of existing or moderately damaged RC buildings.

Keywords

Acknowledgement

The experimental research was carried out at the Structural and Earthquake Engineering Laboratory of Istanbul Technical University. The authors thank the technical staff of the laboratory for their helpful assistance, and also the Scientific Research Project Unit of Istanbul Technical University (BAP) for providing the financial support (Protocol #3555) for the Ph.D. study.

References

  1. ACI 440.2R-17 (2017), Guide for the Design and Construction of Externally Bonded FRP Systems for strengthening Concrete Structures, May.
  2. ACI 549.4R-13 (2020), Guide to Design and Construction of Externally Bonded Fabric Reinforced Cementitious, ACI Committee, MI, USA.
  3. Matrix (FRCM), Systems for Repair and Strengthening Concrete and Masonry Structures, December.
  4. Akhoundi, F., Silva, L.M., Vasconcelos, G. and Lourenco, P. (2021), "Out-of-plane strengthening of masonry infills using textile reinforced mortar (TRM) technique", Int. J. Arch. Herit., 1-16. https://doi.org/10.1080/15583058.2021.1922782.
  5. Almousallam, T. and Al-Salloum, Y. (2007), "Behavior of FRP strengthened infill walls under in-plane seismic loading", Am. Soc. Civ. Eng., 11(3), 308-318. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:3(308).
  6. Al-Salloum, Y.A., Siddiqui, N.A., Elsanadedy, H.M., Abadel, A.A. and Aqel, M.A. (2011), "Textile-reinforced mortar versus FRP as strengthening material for seismically deficient RC beam-column joints", J. Compos. Constr., 15(6), 920-933. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000222.
  7. ASTM (2016a), Standard test method for compressive strength of cylindrical concrete specimens, ASTM C39/C39M, West Conshohocken, PA, ASTM.
  8. Athanasia, K., Theodoros, C., Dimitra, V. and Athanasios, I. (2020), "Ultimate shear strength prediction model for unreinforced masonry retrofitted externally with textile reinforced mortar", Earthq. Struct., 19(6), 411-425. https://doi.org/10.12989/eas.2020.19.6.411.
  9. Azam, R. and Soudki, K. (2014), "FRCM strengthening of shear-critical RC beams", J. Compos. Constr., 18(5), 04014012. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000464.
  10. Banu, A., Hsuan-The, H., Fu-Pei, H., Ay Lie, H., Panapa, P. and Yanuar, H. (2020), "Seismic performance of non-ductile detailing RC frames: An experimental investigation", Earthq. Struct., 19(6), 485-498. https://doi.org/10.12989/eas.2020.19.6.485.
  11. Basalo, F., Matta, F. and Nanni, A. (2012), "Fiber-reinforced cement-based composite system for concrete confinement", Constr. Build. Mater., 32, 55-65. https://doi.org/10.1016/j.conbuildmat.2010.12.063.
  12. Bournas, D. and Triantafillou, T. (2011), "Bar buckling in RC columns confined with composite materials", J. Compos. Constr., 15(3), 393-403. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000180.
  13. Bournas, D., Lontou, P., Papanicolaou, C. and Triantafillou, T. (2007), "Textile-reinforced mortar (TRM) versus FRP confinement in reinforced concrete columns", ACI Struct. J., 104(6), 740-748.
  14. Bournas, D.A., Lontou, P.V., Papanicolaou, C.G. and Triantafillou, T.C. (2007), "Textile-reinforced mortar versus fiber-reinforced polymer confinement in reinforced concrete columns", ACI Struct. J., 104(6), 740.
  15. Chris, G. and Golias, E. (2018), "Full scale tests of RC joints with minor to moderate seismic damage repaired using C-FRP sheets", Earthq. Struct., 15(6), 617-627. https://doi.org/10.12989/eas.2018.15.6.617.
  16. Corazao, M. and Durrani, A. (1989), "Repair and strengthening of beam-to-column connections subjected to earthquake loading", Report No. NCEER-89-13, National Center for Earthquake Engineering Research.
  17. Costas, P. and Triantafillou, T.C. (2003), "Experimental investigation of FRP-strengthened RC beam-column joints", J. Compos. Constr., 7(1), 39-49. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:1(39).
  18. Ngo, D.Q., Nguyen, H.C. and Mai, D.L. (2020), "Experimental and numerical evaluation of concentrically loaded RC columns strengthening by textile reinforced concrete jacketing", Civil Eng. J., 6(8), 1428-1442. https://doi.org/10.28991/cej-2020-03091558.
  19. Harris, H.G. and Sabnis, G. (1999), Structural Modeling and Experimental Techniques, CRC Press, USA.
  20. Ghobarah, A. and Said, A. (2002), "Shear strengthening of beam-column joints", 24(7), 881-888. https://doi.org/10.1016/s0141-0296(02)00026-3.
  21. Guler, K. and Altan, M. (2004), "An examination of damages of reinforced concrete consoled buildings in Turkey due to 17 August 1999 Kocaeli Earthquake", 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, August.
  22. Gusella, F., Orlando, M., & Vignoli, A. (2017), Effects of pinching in the hysteresis loop of rack connections, Effects of pinching in the hysteresis loop of rack connections, 82-91.
  23. Kakaletsis, D. (2012), "Comparison of CFRP and alternative seismic retrofitting techniques for bare and infilled RC frames", J. Compos. Constr., 15(4), 565-577. https://https://doi.org/10.1061/(ASCE)CC.1943-5614.0000196.
  24. Lampros, N., Tetta Z., Bournas, D. and Triantafillou, T. (2018), "Strengthening of concrete structures with textile reinforced mortars: State-of-the-art review", J. Compos. Constr., 23(1), 03118001. https://https://doi.org/10.1061/(ASCE)CC.1943-5614.0000882.
  25. Ludovico, M., Polese, M., D'Aragona, M., Prota, A. and Manfredi, G. (2013), "A proposal for plastic hinges modification factors for damaged RC columns", Eng. Struct., 51, 99-112. https://doi.org/10.1016/j.engstruct.2013.01.009.
  26. Maeda1, M., Nakano, Y. and Lee, K.S. (2004), "Post-earthquake damage evaluation for R/C buildings", CTBUH Conference, Seoul, Korea, October.
  27. Mahdi, A, Mohammed, S., Kamyar, K. and Hamid, Z. (2017), "External retrofit of beam column joints in old fashioned RC structures", Earthq. Struct., 12(2), 237-250. https://doi.org/10.12989/eas.2017.12.2.237.
  28. Mirmiran, A., Shahawy, M., Samaan, M., Echary, H., Mastrapa, J. and Pico, O. (1998), "Effect of column parameters on FRP-confined concrete", J. Compos. Constr., 2(4), 175-185. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(175).
  29. Moretti, M. and Tassios, T. (2007), "The behavior of short columns subjected to cyclic shear displacements: Experimental results", Eng. Struct., 29(8), 2018-2029. https://doi.org/10.1016/j.engstruct.2006.11.001.
  30. Mosalam, K.M., White, R.N. and Gergely, P. (1998), "Static response of infilled frames using quasi-static experimentation", J. Struct. Eng., 123(11), 1462-1469. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:11(1462).
  31. Mostaghel, Naser (1999), "Analytical description of pinching, degrading hysteretic systems", J. Eng. Mech., 125(2), 216-224. https://doi.org/10.1061/(asce)0733-9399(1999)125:2(216).
  32. Noor, F.A. and Boswell, L.F. (1992), Small Scale Modelling of Concrete Structures, CRC Press, London.
  33. O zkaynak, H. (2010), "The earthquake behavior of RC frames with fiber polymer confined infill walls and their structural damping properties", Ph.D. Thesis, Istanbul Technical University, Institute of Science, Turkey.
  34. Panagiotis, D., Bournas, D. and Triantafillou, T. (2019), "Combined seismic and energy upgrading of existing reinforced concrete buildings using TRM jacketing and thermal insulation", Earthq. Struct., 16(5), 625-639. https://doi.org/10.12989/eas.2019.16.5.625.
  35. Park, R. (1989), "Evaluation of durability of structures and structural assemblages from laboratory testing", Bull. N. Z. Soc. Earthq. Eng., 22(3), 155-166. https://doi.org/10.5459/bnzsee.22.3.155-166.
  36. Penelis, G.G. and Penelis, G.G. (2014), Concrete Buildings in Seismic Regions, CRC Press, Boca Raton, FL, USA.
  37. Realfonzo, R., Napoli, A. and Pinilla, J.G.R. (2014), "Cyclic behavior of RC beam-column joints strengthened with FRP systems", Constr. Build. Mater., 54(1), 282-297. https://doi.org/10.1016/j.conbuildmat. 2013.12.043.
  38. Romanbabu, M., Ashwin, K. and Dipti, R. (2019), "Cyclic performance of steel fibre-reinforced concrete exterior beamcolumn joints", Earthq. Struct., 16(5), 533-546. https://doi.org/10.12989/eas.2019.16.5.533.
  39. Tetta, Z. and Bournas, D. (2016), "TRM versus FRP jacketing in shear strengthening of concrete members subjected to high temperatures", Compos. B: Eng., 106, 190-205. https://doi.org/10.1016/j.compositesb.2016.09.026.
  40. Tetta, Z. and Bournas, D. (2015) "Shear strengthening of RC beams using textile reinforcement in cement or epoxy-based matrices", FERRO-11-11th International Symposium on Ferrocement and 3rd ICTRC-International Conference on Textile Reinforced Concrete, achen, Germany, June. https://doi.org/ 10.13140/rg.2.1.5077.9766.
  41. Tommaso, A., Di Focacci, F. and Mantegazza, G. (2007), "FRCM versus FRP composites to strengthen RC beams: A comparative analysis", Proceedings of the International Symposium on Fibre Reinforced Polymers for Reinforced Concrete Structures (FRPRCS8), Patras, Greece.
  42. Triantafillou, T. and Papanicolaou, C. (2006), "Shear strengthening of reinforced concrete members with textile reinforced mortar (TRM)", Mater. Struct., 39(1), 93-103. https://doi.org/10.1007/s11527-005-9034-3.
  43. Triantafillou, T. and Papanicolaou, C. (2005), "Textile reinforced mortars (TRM) versus fiber-reinforced polymers (FRP) as strengthening materials of concrete structures", 7th International Symposium Fiber-Reinforced Polymer Reinforced Concrete Structures, Kansas, Missouri, USA.
  44. Triantafillou, T., Papanicolaou, C., Zissinopoulos, P. and Laourdekis, T. (2006), "Concrete confinement with textile-reinforced mortar jackets", ACI Struct. J., 103(1). 28-37.
  45. Triantafillou, T. (2005), "Recent developments in the strengthening of concrete structures with advanced composites textile-reinforced mortar (TRM) jacketing", Proceedings of the International Conference on Structural Composites for Infrastructure Applications, Alexandria, Egypt, December.
  46. TS EN 12390-3 (2019), Turkish Standard for Testing Hardened Concrete-Part 3-Compressive Strength of Test Specimens.
  47. TS 708 (2010), Turkish Standard for Steel Bars for Concrete.
  48. TS 138 EN 10002-1 (2004), Turkish Standard for Metallic Materials- Tensile Testing Part 1.
  49. Turkey Building Earthquake Code TBEC (2018), Republic of Turkey Ministry of Interior Disaster and Emergency Management Authority, Ankara, Turkey.
  50. Yurdakul, O . and Avsar, O. (2016), "Strengthening of substandard reinforced concrete beam-column joints by external post-tension rods", Eng. Struct., 107(1), 9-22. https://doi.org/10.1016/j.engstruct.2015.11.004.