DOI QR코드

DOI QR Code

MXene-CNT-WPU 복합소재 기반 면상발열체의 배합 비율에 따른 발열 특성

Heating Characteristics of Planar Heater Fabricated with Different Mixing Ratios of MXene-CNT-WPU Composites

  • 오효준 (한국전자통신연구원, ICT창의연구소, 소재부품원천연구본부, 그래핀연구팀) ;
  • 닷꾸이응우엔 (한국전자통신연구원, ICT창의연구소, 소재부품원천연구본부, 그래핀연구팀) ;
  • 이윤식 (한국전자통신연구원, ICT창의연구소, 소재부품원천연구본부, 그래핀연구팀) ;
  • 최춘기 (한국전자통신연구원, ICT창의연구소, 소재부품원천연구본부, 그래핀연구팀)
  • Hyo-Jun, Oh (Graphene Research Team, Materials and Components Research Division, ICT Creative Research Lab., Electronics and Telecommunications Research Institute (ETRI)) ;
  • Quy-Dat, Nguyen (Graphene Research Team, Materials and Components Research Division, ICT Creative Research Lab., Electronics and Telecommunications Research Institute (ETRI)) ;
  • Yoonsik, Yi (Graphene Research Team, Materials and Components Research Division, ICT Creative Research Lab., Electronics and Telecommunications Research Institute (ETRI)) ;
  • Choon-Gi, Choi (Graphene Research Team, Materials and Components Research Division, ICT Creative Research Lab., Electronics and Telecommunications Research Institute (ETRI))
  • 투고 : 2022.08.10
  • 심사 : 2022.09.05
  • 발행 : 2022.12.30

초록

본 연구는 1차원의 Carbon nanotube (CNT)와 2차원의 MXene을 최적의 비율로 배합한 우수한 전기전도성과 발열특성을 가진 저차원 복합소재 기반 면상발열체를 제안한다. CNT와 MXene을 친환경 소재인 Waterborne polyurethane (WPU)과 배합하되, MXene과 CNT의 중량비율을 3:1, 1:1, 1:3, 1:7, 1:14로 다르게 적용하고 WPU는 동일한 비율로 적용하였다. 그 결과, CNT 비율이 높을수록 면저항이 낮아지고 발열온도가 높아지는 것을 확인하였다. MXene과 CNT를 1:7, 1:14로 배합하는 경우 CNT-WPU 면상발열체보다 더 낮은 면저항과 높은 발열온도를 보여주었다. 이는 1차원 CNT와 2차원 MXene의 최적 배합으로 고밀도 네트워크가 형성되어 평평한 표면이 형성되기 때문이다. 위 우수한 전기적 특성을 가진 저차원 복합소재는 플렉서블 소자에 유용하게 활용될 것으로 기대된다.

This study presents an excellent planar heater based on low-dimensional composites. By optimizing the ratio of 1D carbon nanotubes (CNT) and 2D MXene (Ti3C2TX), it is possible to create a planar heater that has superior electrical conductivity and high heat generation characteristics. Low-dimensional composites were prepared by mixing CNT paste and MXene solution with eco-friendly waterborne polyurethane (WPU). In order to find the optimal mixing ratio for the MXene-CNT-WPU composites, samples with MXene to CNT weight ratios of 3:1, 1:1, 1:3, 1:7, and 1:14 were investigated. In addition to these different weight ratios, 5 wt% WPU was equally applied to each sample. It was confirmed that the higher the weight ratio of CNT, the lower the sheet resistance and the higher the heating temperature. In particular, when the MXene-CNT-WPU planar heater was fabricated by mixing MXene and CNT at a weight ratio of 1:7 and 1:14, the heating temperature was higher than the heating temperature of a CNT-WPU planar heater. These characteristics are due to the optimized mixture of the 1D materials (CNT) and the 2D materials (MXene) causing the formation of a flat surface and a dense network structure. The low-dimensional composites manufactured with the optimized mixing ratios found in this study are expected to be applied in flexible electronic devices.

키워드

과제정보

본 연구는 산업통상자원부 및 방위사업청의 민군기술협력사업(과제번호: 18CM5084)의 지원에 의하여 수행되었음.

참고문헌

  1. Hao, L., Yi, Z., Li, C., Li, X., Yuxiu, W., and Yan, G., "Development and characterization of flexible heating fabric based on conductive filaments", Meas. J. Int. Meas. Confed., 45(7), 1855-1865 (2012).
  2. Lee, S. H., Kim, S. W., Park, C. W., Jeong, H. E., Ok, J. G. and Kwak, M. K., "Scalable fabrication of flexible transparent heaters comprising continuously created metallic micromesh patterns incorporated with biomimetic antireflection layers", Int. J. Precis. Eng. Manuf.-Green Tech., 4, 177-181 https://doi.org/10.1007/s40684-017-0022-1
  3. Xiao, Z., Guo, R., He, X., Gan, Y., Zhang, J., Huang, H., Zhang, W., Wang, B., Han, Y., and Xia, Y., "Polybenzimidazole/Conductive Carbon Black Composite Driven at Low Voltage for High-Temperature Heaters", J. Electron. Mater., 51, 2652-2662 (2022). https://doi.org/10.1007/s11664-022-09525-7
  4. Jeong, K. and Kim, Y.-H., "A Study on the Preparation and Purification Characteristics of Graphene Oxide by Graphite Type", Clean Tecnnol., 27(2), 132-138 (2021).
  5. Wu, S.-W., Chang, T.-C., Lin, Y.-H., Chen, H.-F., and Fuh, Y.-K., "Fabrication of copper powder hybrid supported fillers with interconnected 1D/2D/3D nanostructures for enhanced thermal interface materials properties", Int. J. Adv. Manuf. Technol., 121, 3453-3462 (2022). https://doi.org/10.1007/s00170-022-09551-z
  6. Bernard, C., Goodwin Jr., D. G., Gu, X., Celina, M., Nyden, M., Jacobs, D., Sung, L. and Nguyen, T., "Graphene oxide/waterborne polyurethane nanocoatings: effects of graphene oxide content on performance properties", J. Coatings Tech. Res., 17, 255-269 (2020). https://doi.org/10.1007/s11998-019-00267-6
  7. Sur, S.-H., Lee, Y.-H., Park, C.-C., and Kim, H.-D., "Comparison of Properties of Waterborne Polyurethanes Containing Various Polyols", Clean Technol., 24(3), 190-197 (2018). https://doi.org/10.7464/KSCT.2018.24.3.190
  8. Tian, Y., Guo, N., Wang, W.-Y., Geng, W., Jing, L.-C., Wang, T., Yuan, X.-T., Zhu, Z., Ma, Y. and Geng, H.-Z., "Bilayer and three dimensional conductive network composed by SnCl2 reduced rGO with CNTs and GO applied in transparent conductive films", Sci. Rep., 11, 9891 (2021).
  9. Wang, L., Chen, L., Song, P., Liang, C., Lu, Y., Qiu, H., Zhang, Y., Kong, J., and Gu, J., "Fabrication on the annealed Ti3C2TX MXene/Epoxy nanocomposites for electromagnetic interference shielding application", Compos. B Eng., 171, 111-118 (2019). https://doi.org/10.1016/j.compositesb.2019.04.050
  10. Yun, T., Kim, H., Iqbal, A., Cho, Y. S., Lee, G. S., Kim, M.-K., Kim, S. J., Kim, D., Gogotsi, Y., Kim, S. O., and Koo, C. M., "Electromagnetic Shielding of Monolayer MXene Assemblies", Adv. Mater., 32, 1906769 (2020).
  11. Ji, B., Fan, S., Ma, X., Hu, K., Wang, L., Luan, C., Deng, J., Cheng, L., and Zhang, L., "Electromagnetic shielding behavior of heat-treated Ti3C2TX MXene accompanied by structural and phase changes", Carbon, 165, 150-162 (2020). https://doi.org/10.1016/j.carbon.2020.04.041
  12. Seredych, M., Shuck, C. E., Pinto, D., Alhabeb, M., Precetti, E., Deysher, G., Anasori, B., Kurra, N., and Gogotsi, Y., "High-temperature behavior and surface chemistry of carbide MXenes studied by thermal analysis", Chem. Mater., 31, 3324-3332 (2019). https://doi.org/10.1021/acs.chemmater.9b00397
  13. Oh, H.-J., Dao, V.-D., and Choi, H.-S., "Electromagnetic shielding effectiveness of a thin silver layer deposited onto PET film via atmospheric pressure plasma reduction", Appl. Surf. Sci., 435, 7-15 (2018). https://doi.org/10.1016/j.apsusc.2017.11.043
  14. Isa, S. S. M., Ramli, M. M., Jamlos, M. F., Hambali, N. A. M. A., Isa, M. M., Kasjoo, S. R., Ahmad, N., Nor, N. I. M., and Khalid, N., "Multi-Walled Carbon Nanotubes on Plastic NH3 Gas Sensor", Paper No. 020030, Asian Conference on Chemical Sensor, Penang, Malaysia (Nov. 2015).
  15. Jo, H. S., An, S., Lee, J.-G., Park, H. G., Al-Deyab, S. S., Yarin, A. L., and Yoon, S. S., "Highly flexible, stretchable, patternable, transparent copper fiber heater on a complex 3D surface", NPG Asia Mater., 9, e347 (2017).