DOI QR코드

DOI QR Code

양면 인쇄법을 이용한 중금속 검출용 3D 종이 기반 분석장치 제작

Fabrication of 3D Paper-based Analytical Device Using Double-Sided Imprinting Method for Metal Ion Detection

  • 최진솔 (전남대학교 공학대학 화공생명공학과) ;
  • 정헌호 (전남대학교 공학대학 화공생명공학과)
  • Jinsol, Choi (Department of Chemical and Biomolecular Engineering, Chonnam National University) ;
  • Heon-Ho, Jeong (Department of Chemical and Biomolecular Engineering, Chonnam National University)
  • 투고 : 2022.10.21
  • 심사 : 2022.11.17
  • 발행 : 2022.12.30

초록

미세유체 종이-기반 분석 장치는 최근 현장 진단 및 환경 물질 감지를 포함한 다양한 적용가능성으로 주목을 받고 있다. 본 연구는 적은 비용과 간단한 검출 방법으로 중금속을 빠르게 검출할 수 있는 3D-μPAD를 제작하기 위해 PDMS 양면 인쇄 방법을 제안하였다. 3D-μPAD 디자인은 레이저 커팅으로 아크릴 스탬프에 적용할 수 있으며, 제작된 스탬프에 PDMS 고분자를 스핀 코팅 후 양면접촉인쇄 방식 도입을 통해 3차원 형태의 소수성 장벽 형성에 필요한 조건을 확인하였다. 구체적으로 소수성 장벽 형성 조건인 고분자 농도, 스핀 코팅 속도 및 접촉 시간에 따라 PDMS 소수성 장벽 면적과 친수성 채널의 면적 변화를 분석함으로써 3D-μPAD 제작 공정 조건 최적화를 수행하였다. 최적화된 μPAD로 니켈, 구리, 수은 이온, pH를 다양한 농도에서 검출하였고 이를 ImageJ 프로그램으로 분석하여 grayscale 값으로 정량화 하였다. 이를 통해 3D-μPAD를 제작함으로써 특별한 분석 기기 없이 다양한 중금속 비색 검출을 수행함으로써 조기진단 바이오 센서로의 응용 가능성을 증명하였다. 이 3D-μPAD는 휴대가 간편한 다중 금속이온 검출 바이오센서로서, 신속한 현장 모니터링이 가능하므로 개발도상국 같은 자원이 제한된 지역에서 유용하게 사용 가능하다.

Microfluidic paper-based analytical devices (μPADs) have recently been in the spotlight for their applicability in point-of-care diagnostics and environmental material detection. This study presents a double-sided printing method for fabricating 3D-μPADs, providing simple and cost effective metal ion detection. The design of the 3D-μPAD was made into an acryl stamp by laser cutting and then coating it with a thin layer of PDMS using the spin-coating method. This fabricated stamp was used to form the 3D structure of the hydrophobic barrier through a double-sided contact printing method. The fabrication of the 3D hydrophobic barrier within a single sheet was optimized by controlling the spin-coating rate, reagent ratio and contacting time. The optimal conditions were found by analyzing the area change of the PDMS hydrophobic barrier and hydrophilic channel using ink with chromatography paper. Using the fabricated 3D-μPAD under optimized conditions, Ni2+, Cu2+, Hg2+, and pH were detected at different concentrations and displayed with color intensity in grayscale for quantitative analysis using ImageJ. This study demonstrated that a 3D-μPAD biosensor can be applied to detect metal ions without special analysis equipment. This 3D-μPAD provides a highly portable and rapid on-site monitoring platform for detecting multiple heavy metal ions with extremely high repeatability, which is useful for resource-limited areas and developing countries.

키워드

과제정보

이 논문은 과학기술정보통신부의 재원으로 한국 연구재단-신진연구지원사업(No. NRF-2020R1C1C1005505)의 지원을 받아 수행되었으며 이에 감사드립니다.

참고문헌

  1. Li, M., R. Cao, A. Nilghaz, L. Guan, X. Zhang, and W. Shen. ""Periodic-table-style" paper device for monitoring heavy metals in water," Anal. Chem., 87(5), 2555-2559 (2015). https://doi.org/10.1021/acs.analchem.5b00040
  2. Boyd, R. S., "Heavy metal pollutants and chemical ecology: exploring new frontiers," J. Chem. Ecol., 36(1), 46-58 (2010). https://doi.org/10.1007/s10886-009-9730-5
  3. Johri, N., G. Jacquillet, and R. Unwin. "Heavy metal poisoning: the effects of cadmium on the kidney," Biometals., 23(5), 783-792 (2010). https://doi.org/10.1007/s10534-010-9328-y
  4. Sanders, T., Y. Liu, V. Buchner, and P.B. Tchounwou. "Neurotoxic effects and biomarkers of lead exposure: a review," Rev. Environ. Health., 24(1), 15-45 (2009). https://doi.org/10.1515/reveh.2009.24.1.15
  5. Lopez Marzo, A. M., J. Pons, D. A. Blake, and A. Merkoci. "All-integrated and highly sensitive paper based device with sample treatment platform for Cd2+ immunodetection in drinking/tap waters," Anal. Chem., 85(7), 3532-3538 (2013). https://doi.org/10.1021/ac3034536
  6. Normandin, L. and A. S. Hazell. "Manganese neurotoxicity: an update of pathophysiologic mechanisms," Metab. Brain Dis., 17(4), 375-387 (2002). https://doi.org/10.1023/A:1021970120965
  7. Hossain, S. M. and J. D. Brennan. "β-Galactosidase-based colorimetric paper sensor for determination of heavy metals," Anal. Chem., 83(22), 8772-8778 (2011). https://doi.org/10.1021/ac202290d
  8. Lemos, V. A. and A. L. de Carvalho. "Determination of cadmium and lead in human biological samples by spectrometric techniques: a review," Environ. Monit. Assess., 171(1-4), 255-265 (2010). https://doi.org/10.1007/s10661-009-1276-z
  9. Butcher, D. J., "Advances in inductively coupled plasma optical emission spectrometry for environmental analysis," Instrum Sci. Technol., 38(6), 458-469 (2010). https://doi.org/10.1080/10739149.2010.517884
  10. Feldmann, J., P. Salaun, and E. Lombi. "Critical review perspective: elemental speciation analysis methods in environmental chemistry-moving towards methodological integration," Environ. Chem. Lett., 6(4), 275-289 (2009). https://doi.org/10.1071/EN09018
  11. Martinez, A. W., S. T. Phillips, G. M. Whitesides, and E. Carrilho. "Diagnostics for the developing world: microfluidic paper-based analytical devices," Anal. Chem., 82, 3-10 (2010). https://doi.org/10.1021/ac9013989
  12. Yamada, K., T. G. Henares, K. Suzuki, and D. Citterio. "Paper based inkjet printed microfluidic analytical devices," Angew. Chem. Int. Ed., 54(18), 5294-5310 (2015). https://doi.org/10.1002/anie.201411508
  13. Yamada, K., H. Shibata, K. Suzuki, and D. Citterio. "Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges," Lab Chip., 17(7), 1206-1249 (2017). https://doi.org/10.1039/C6LC01577H
  14. Martinez, A. W., S. T. Phillips, M. J. Butte, and G. M. Whitesides. "Patterned paper as a platform for inexpensive, low volume, portable bioassays," Angew. Chem., 119(8), 1340-1342 (2007). https://doi.org/10.1002/ange.200603817
  15. Kim, D. H., S. G. Jeong, and C. S. Lee. "Angular-based Measurement for Quantitative assay of Albumin in three-dimensional Paper-based analytical Device," Korean Chem. Eng. Res., 58(2), 286-292 (2020).
  16. Jeong, H.-H. and C. Park. "Fabrication of Paper-based Biosensor Chip Using Polydimethylsiloxane Blade Coating Method," Korean Chem. Eng. Res., 59(1), 100-105 (2021).
  17. Li, F., Y. Hu, Z. Li, J. Liu, L. Guo, and J. He. "Three-dimensional microfluidic paper-based device for multiplexed colorimetric detection of six metal ions combined with use of a smartphone," Anal. Bioanal. Chem., 411(24), 6497-6508 (2019). https://doi.org/10.1007/s00216-019-02032-5
  18. Xu, W., X. Chen, S. Cai, J. Chen, Z. Xu, H. Jia, and J. Chen. "Superhydrophobic titania nanoparticles for fabrication of paper-based analytical devices: An example of heavy metals assays," Talanta., 181, 333-339 (2018). https://doi.org/10.1016/j.talanta.2018.01.035
  19. Sadollahkhani, A., A. Hatamie, O. Nur, M. Willander, B. Zargar, and I. Kazeminezhad. "Colorimetric disposable paper coated with ZnO@ ZnS core-shell nanoparticles for detection of copper ions in aqueous solutions," ACS Appl. Mater. Interfaces., 6(20), 17694-17701 (2014). https://doi.org/10.1021/am505480y
  20. Li, J.-j., C.-h. Ji, C.-j. Hou, D.-q. Huo, S.-y. Zhang, X.-g. Luo, M. Yang, H.-b. Fa, and B. Deng. "High efficient adsorption and colorimetric detection of trace copper ions with a functional filter paper," Sens. Actuators B Chem., 223, 853-860 (2016). https://doi.org/10.1016/j.snb.2015.10.017
  21. Fu, Q., Y. Tang, C. Shi, X. Zhang, J. Xiang, and X. Liu. "A novel fluorescence-quenching immunochromatographic sensor for detection of the heavy metal chromium," Biosens. Bioelectron., 49, 399-402 (2013). https://doi.org/10.1016/j.bios.2013.04.048
  22. Hu, J., C.-H.T. Yew, X. Chen, S. Feng, Q. Yang, S. Wang, W.-H. Wee, B. Pingguan-Murphy, T.J. Lu, and F. Xu. "based capacitive sensors for identification and quantification of chemicals at the point of care," Talanta., 165, 419-428 (2017). https://doi.org/10.1016/j.talanta.2016.12.086
  23. Chiang, C.-K., A. Kurniawan, C.-Y. Kao, and M.-J. Wang. "Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays," Talanta., 194, 837-845 (2019). https://doi.org/10.1016/j.talanta.2018.10.104
  24. Martinez, A.W., S.T. Phillips, B.J. Wiley, M. Gupta, and G.M. Whitesides. "FLASH: a rapid method for prototyping paperbased microfluidic devices," Lab Chip., 8(12), 2146-2150 (2008). https://doi.org/10.1039/b811135a
  25. Yu, W.W. and I.M. White. "Inkjet printed surface enhanced Raman spectroscopy array on cellulose paper," Anal. Chem., 82(23), 9626-9630 (2010). https://doi.org/10.1021/ac102475k
  26. Xu, C., L. Cai, M. Zhong, and S. Zheng. "Low-cost and rapid prototyping of microfluidic paper-based analytical devices by inkjet printing of permanent marker ink," RSC Adv., 5(7), 4770-4773 (2015). https://doi.org/10.1039/C4RA13195A
  27. Lu, Y., W. Shi, J. Qin, and B. Lin. "Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing," Anal. Chem., 82(1), 329-335 (2010). https://doi.org/10.1021/ac9020193
  28. Cai, L., Y. Wu, C. Xu, and Z. Chen. "A simple paper-based microfluidic device for the determination of the total amino acid content in a tea leaf extract," J. Chem. Educ., 90(2), 232-234 (2013). https://doi.org/10.1021/ed300385j
  29. Li, X., J. Tian, T. Nguyen, and W. Shen. "Paper-based microfluidic devices by plasma treatment," Anal. Chem., 80(23), 9131-9134 (2008). https://doi.org/10.1021/ac801729t
  30. Fenton, E. M., M.R. Mascarenas, G. P. Lopez, and S. S. Sibbett. "Multiplex lateral-flow test strips fabricated by two-dimensional shaping," ACS Appl. Mater. Interfaces., 1(1), 124-129 (2009). https://doi.org/10.1021/am800043z
  31. Fu, E., P. Kauffman, B. Lutz, and P. Yager. "Chemical signal amplification in two-dimensional paper networks," Sens. Actuators B Chem., 149(1), 325-328 (2010). https://doi.org/10.1016/j.snb.2010.06.024
  32. Dungchai, W., O. Chailapakul, and C. S. Henry. "A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing," Analyst., 136(1), 77-82 (2011). https://doi.org/10.1039/C0AN00406E
  33. Sun, J.-Y., C.-M. Cheng, and Y.-C. Liao. "Screen printed paper-based diagnostic devices with polymeric inks," Anal. Sci., 31(3), 145-151 (2015). https://doi.org/10.2116/analsci.31.145
  34. Chitnis, G., Z. Ding, C.-L. Chang, C. A. Savran, and B. Ziaie. "Laser-treated hydrophobic paper: an inexpensive microfluidic platform," Lab Chip., 11(6), 1161-1165 (2011). https://doi.org/10.1039/c0lc00512f
  35. Chen, B., P. Kwong, and M. Gupta. "Patterned fluoropolymer barriers for containment of organic solvents within paper-based microfluidic devices," ACS Appl. Mater. Interfaces., 5(23), 12701-12707 (2013). https://doi.org/10.1021/am404049x
  36. Dornelas, K. L., N. Dossi, and E. Piccin. "A simple method for patterning poly (dimethylsiloxane) barriers in paper using contact-printing with low-cost rubber stamps," Analytica chimica acta., 858, 82-90 (2015). https://doi.org/10.1016/j.aca.2014.11.025
  37. Jahanshahi-Anbuhi, S., A. Henry, V. Leung, C. Sicard, K. Pennings, R. Pelton, J. D. Brennan, and C. D. Filipe. "Paper-based microfluidics with an erodible polymeric bridge giving controlled release and timed flow shutoff," Lab Chip., 14(1), 229-236 (2014). https://doi.org/10.1039/C3LC50762A
  38. Jahanshahi-Anbuhi, S., P. Chavan, C. Sicard, V. Leung, S.Z. Hossain, R. Pelton, J. D. Brennan, and C. D. Filipe. "Creating fast flow channels in paper fluidic devices to control timing of sequential reactions," Lab Chip., 12(23), 5079-5085 (2012). https://doi.org/10.1039/c2lc41005b
  39. Renault, C., X. Li, S.E. Fosdick, and R.M. Crooks. "Hollowchannel paper analytical devices," Anal. Chem., 85(16), 7976-7979 (2013). https://doi.org/10.1021/ac401786h
  40. Giokas, D. L., G. Z. Tsogas, and A. G. Vlessidis. "Programming fluid transport in paper-based microfluidic devices using razor-crafted open channels," Anal. Chem., 86(13), 6202-6207 (2014). https://doi.org/10.1021/ac501273v
  41. Verma, M. S., M.-N. Tsaloglou, T. Sisley, D. Christodouleas, A. Chen, J. Milette, and G.M. Whitesides. "Sliding-strip microfluidic device enables ELISA on paper," Biosens. Bioelectron., 99, 77-84 (2018). https://doi.org/10.1016/j.bios.2017.07.034
  42. Liu, F. and C. Zhang. "A novel paper-based microfluidic enhanced chemiluminescence biosensor for facile, reliable and highly-sensitive gene detection of Listeria monocytogenes," Sens. Actuators B Chem., 209, 399-406 (2015). https://doi.org/10.1016/j.snb.2014.11.099
  43. Renault, C., M. J. Anderson, and R. M. Crooks. "Electrochemistry in hollow-channel paper analytical devices," J. Am. Chem. Soc., 136(12), 4616-4623 (2014). https://doi.org/10.1021/ja4118544
  44. Qi, J., B. Li, X. Wang, L. Fu, L. Luo, and L. Chen. "Rotational paper-based microfluidic-chip device for multiplexed and simultaneous fluorescence detection of phenolic pollutants based on a molecular-imprinting technique," Anal. Chem., 90(20), 11827-11834 (2018). https://doi.org/10.1021/acs.analchem.8b01291
  45. Wu, L., C. Ma, X. Zheng, H. Liu, and J. Yu. "Paper-based electrochemiluminescence origami device for protein detection using assembled cascade DNA-carbon dots nanotags based on rolling circle amplification," Biosens. Bioelectron., 68, 413-420 (2015). https://doi.org/10.1016/j.bios.2015.01.034
  46. Devadhasan, J. P. and J. Kim. "A chemically functionalized paper-based microfluidic platform for multiplex heavy metal detection," Sens. Actuators B Chem., 273, 18-24 (2018). https://doi.org/10.1016/j.snb.2018.06.005