DOI QR코드

DOI QR Code

Development of Metal Oxide-based Photocatalyst Coated on Activated Carbon for Removing Volatile Organic Compounds

휘발성 유기화합물 저감을 위한 금속산화물 기반 광촉매-활성탄 복합체 개발

  • Jae-Rak, Ko (Department of Chemical Engineering, Gyeongsang National University) ;
  • Yewon, Jang (Department of Chemical Engineering, Gyeongsang National University) ;
  • Ho Young, Jun (Department of Chemical Engineering, Gyeongsang National University) ;
  • Hwan-Jin, Bae (TaeKang Co., Ltd.) ;
  • Ju-Hyun, Lee (TaeKang Co., Ltd.) ;
  • Chang-Ho, Choi (Department of Chemical Engineering, Gyeongsang National University)
  • Received : 2022.08.23
  • Accepted : 2022.09.21
  • Published : 2022.12.30

Abstract

Adsorption tower systems based on activated carbon adsorption towers have mainly been employed to reduce the emission of volatile organic compounds (VOCs), a major cause of air pollution. However, the activated carbon currently used in these systems has a short lifespan and thus requires frequent replacement. An approach to overcome this shortcoming could be to develop metal oxide photocatalysis-activated carbon composites capable of degrading VOCs by simultaneously utilizing photocatalytic activation and powerful adsorption by activated carbon. TiO2 has primarily been used as a metal oxide photocatalyst, but it has low economic efficiency due to its high cost. In this study, ZnO particles were synthesized as a photocatalyst due to their relatively low cost. Silver nanoparticles (Ag NPs) were deposited on the ZnO surface to compensate for the photocatalytic deactivation that arises from the wide band gap of ZnO. A microfluidic process was used to synthesize ZnO particles and Ag NPs in separate reactors and the solutions were continuously supplied with a pack bed reactor loaded with activated carbon powder. This microfluidic-assisted pack bed reactor efficiently prepared a Ag-ZnO-activated carbon composite for VOC removal. Analysis confirmed that Ag-ZnO photocatalytic particles were successfully deposited on the surface of the activated carbon. Conducting a toluene gasbag test and adsorption breakpoint test demonstrated that the composite had a more efficient removal performance than pure activated carbon. The process proposed in this study efficiently produces photocatalysis-activated carbon composites and may offer the potential for scalable production of VOC removal composites.

대기 오염의 주요 원인인 휘발성유기화합물(VOCs)의 배출을 저감 하기 위한 방법으로 주로 활성탄 흡착탑이 활용되고 있다. 하지만 활성탄의 짧은 수명과 잦은 교체 주기의 단점이 있어 이를 극복하기 위한 다양한 기술이 개발되고 있으며, 광촉매-활성탄 복합체는 이러한 활성탄의 단점을 극복할 수 있는 방법임을 입증하였다. 광촉매-활성탄 복합체는 활성탄 표면에 금속산화물 광촉매를 코팅하여 광촉매 효과와 활성탄의 흡착능력 효과를 동시에 확보할 수 있는 휘발성유기화합물 저감 물질이다. 미세유체공정을 이용하여 ZnO, 은(Ag) 나노입자를 동시에 합성한 후 실시간으로 ZnO와 은(Ag) 나노입자 용액을 활성탄이 채워진 충진층 반응기에 주입하여 Ag-ZnO 활성탄 복합체를 합성하였다. 합성 반응시간에 따른 광촉매 복합체의 증착양을 분석했으며, 다양한 분석 방법을 통해 광촉매가 활성탄의 기공을 막지 않고 활성탄 표면에 선택적으로 증착 되었음을 확인하였다. 톨루엔 가스백 시험과 흡착 파괴시간 시험을 통해 광촉매-활성탄 복합체가 순수한 활성탄보다 우수한 저감 효과와 지속성을 가지는 것을 확인하였다. 본 연구를 통해 개발된 공정은 광촉매-활성탄 복합체를 효율적으로 생산할 수 있는 방법으로 대량 생산을 위한 스케일 업 공정을 통해 국내의 VOCs 저감 물질 가격 경쟁력을 높일 수 있을 것으로 사료된다.

Keywords

Acknowledgement

본 과제(결과물)는 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 사회맞춤형 산학협력 선도대학(LINC+) 육성사업의 연구결과입니다. 본 과제(결과물)는 2022년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다(2021RIS-003).

References

  1. Li, B, Ho, S. S. H., Li, X. Guo, L., Chen, A., Yang, Y., Chen. D., Lin, and A., Fang, X., "A comprehensive review on anthropogenic volatile organic compounds (VOCs) emission estimates in China: Comparison and outlook," Environ. Int., 156, 106710 (2021). 
  2. Suzuki, N., Nakaoka, H., Nakayama, Y., Tsumura, K., Takaguchi, K., Takaya, K., Eguchi, A., Hanazato, M., Todaka, E., and Mori, C., "Association between sum of volatile organic compounds and occurrence of building-related symptoms in humans: A study in real full-scale laboratory houses," Sci. Total Environ., 750, 141635 (2021). 
  3. Zhang, T., Li, G., Yu, Y., Ji, Y., and An, T., "Atmospheric diffusion profiles and health risks of typical VOC: Numerical modelling study," J. Clean. Prod., 275, 122982 (2020). 
  4. Zhang, X., Gao, B., Creamer, A. E., Cao, C., and Li Y., "Adsorption of VOCs onto engineered carbon materials: A review," J. Hazard. Mater., 338, 102 (2017). 
  5. Kim, B. R., "VOC emissions from automotive painting and their control: A review," Environ. Eng. Res., 16, 1 (2011). 
  6. Laskar, I. I., Hashisho, Z., Phillips, J. H., Anderson, J. E., and Nichols, M., "Modeling the Effect of Relative Humidity on Adsorption Dynamics of Volatile Organic Compound onto Activated Carbon," Environ. Sci. Technol., 53, 2647 (2019). 
  7. Cheng, Q., and Zhang, G. K., "Enhanced photocatalytic performance of tungsten-based photocatalysts for degradation of volatile organic compounds: a review," Tungsten, 2, 240 (2020). 
  8. Rao, Z., Lu, G., Chen, L., Mahmood, A., Shi, G., Tang, Z., Xie, X., and Sun, J., "Photocatalytic oxidation mechanism of Gas-Phase VOCs: Unveiling the role of holes, .OH and .O2-," Chem. Eng. J., 430, 132766 (2022). 
  9. Zhu, L., Shen, D., and Luo, K. H., "A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods," J. Hazard. Mater., 389, 122102 (2020). 
  10. Kim, J. and Lee, B. K., "Enhanced photocatalytic decomposition of VOCs by visible-driven photocatalyst combined Cu-TiO2 and activated carbon fiber," Process Saf. Environ. Prot., 119, 164 (2018). 
  11. Shah, K. W. and Li, W. "A review on catalytic nanomaterials for volatile organic compounds VOC removal and their applications for healthy buildings," Nanomaterials, 9, 910 (2019). 
  12. Gandolfo, A., Marque, S., Temime-Roussel, B., Gemayel, R., Wortham H., Truffier-Boutry, D., Bartolomei, V., and Gligorovski, S., "Unexpectedly High Levels of Organic Compounds Released by Indoor Photocatalytic Paints," Environ. Sci. Technol., 52, 11328 (2018). 
  13. Kato, H. and Kudo, A., "Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium," J. Phys. Chem. B, 106, 5029 (2002). 
  14. Cuerda-Correa, E. M., Alexandre-Franco, M. F., and Fernandez-Gonzalez, C., "Advanced oxidation processes for the removal of antibiotics from water. An overview," Water, 12, 102 (2020). 
  15. Raizada, P., Sudhaik, A., and Singh, P., "Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: A review," Mater. Sci. Energy Technol., 2, 509 (2019). 
  16. Ong, C. B., Ng, L. Y., and Mohammad, A. W., "A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications,"Renew. Sustain. Energy Rev., 81, 536 (2018). 
  17. Wang, H., Zhang, L., Chen, Z., Hu, J., Li, S., Wang, Z., Liu, J., and Wang, X., "Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances," Chem. Soc. Rev., 43, 5234 (2014). 
  18. Hong, E., Choi, T., and Kim, J. H., "Application of content optimized ZnS-ZnO-CuS-CdS heterostructured photocatalyst for solar water splitting and organic dye decomposition," Korean J. Chem. Eng., 32, 424 (2015). 
  19. Li, J., Zhao, Y., Xia, M., An, H., Bai, H., Wei, J., Yang, B., and Yang, G. "Highly efficient charge transfer at 2D/2D layered P-La2Ti2O7/Bi2WO6 contact heterojunctions for upgraded visible-light-driven photocatalysis,"Appl. Catal. B Environ., 261, 118244 (2020). 
  20. Veerakumar, P., Sangili, A., Saranya, K., Pandikumar, A., and Lin, C. K., "Palladium and silver nanoparticles embedded on zinc oxide nanostars for photocatalytic degradation of pesticides and herbicides," Chem. Eng. J., 410, 128434 (2021). 
  21. Drmosh, Q. A., Wajih, Y. A. A., Alade, I. O., Mohamedkhair, A. K., Qamar, M., Hakeem, A. S., and Yamani, Z. H.,"Engineering the depletion layer of Au-modified ZnO/Ag core-shell films for high-performance acetone gas sensing," Sensors Actuators, B Chem., 338, 129851 (2021). 
  22. Han, Z., Ren, L., Cui, Z., Chen, C., Pan, H., and Chen, J.,"Ag/ZnO flower heterostructures as a visible-light driven photocatalyst via surface plasmon resonance," Appl. Catal. B Environ., 126, 298 (2012). 
  23. Cerron-Calle, G. A., Aranda-Aguirre, A. J., Luyo, C., Garcia-Segura, S., and Alarcon, H.,"Photoelectrocatalytic decolorization of azo dyes with nano-composite oxide layers of ZnO nanorods decorated with Ag nanoparticles," Chemosphere, 219, 296 (2019). 
  24. Ren, C., Yang, B., Wu, M., Xu, J., Fu, Z., lv, Y., Guo, T., Zhao, Y., and Zhu, C.,"Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance," J. Hazard. Mater., 182, 123 (2010). 
  25. Ha, L. P. P., Vinh, T. H. T., Thuy, N. T. B., Thi, C. M., and Van, V. P. "Visible-light-driven photocatalysis of anisotropic silver nanoparticles decorated on ZnO nanorods: Synthesis and characterizations," J. Environ. Chem. Eng., 9, 105103 (2021). 
  26. Jun, H. Y., Chang, C. H., Ahn, K. S., Ryu, S. O., and Choi, C.-H. "Microfluidics-enabled rational design for Ag-ZnO nanocomposite films for enhanced photoelectrochemical performance," Cryst. Eng. Comm., 22, 646 (2020). 
  27. Ko, J.-R., Jun, H. Y., and Choi, C.-H.,"Microfluidic assisted synthesis of Ag-ZnO nanocomposite for enhanced photocatalytic activity," Clean Technol., 27, 291 (2021). 
  28. Hao, N., Xu, Z., Nie, Y., Jin, C., Closson, A. B., Zhang, M., and Zhang, J. X. J.,"Microfluidics-enabled rational design of ZnO micro-/nanoparticles with enhanced photocatalysis, cytotoxicity, and piezoelectric properties," Chem. Eng. J., 378, 122222 (2019). 
  29. Choi, C.-H., and Chang, C.-H., "Aqueous synthesis of tailored ZnO nanocrystals, nanocrystal assemblies, and nanostructured films by physical means enabled by a continuous flow microreactor,"Cryst. Growth Des., 14, 4759 (2014). 
  30. Hao, N., Zhang, M, and Zhang, J. X. J., "Microfluidics for ZnO micro-/nanomaterials development: Rational design, controllable synthesis, and on-chip bioapplications," Biomater. Sci., 8, 1783 (2020). 
  31. Mull, B., Mohlmann, L., and Wilke, O., "Photocatalytic degradation of toluene, butyl acetate and limonene under UV and visible light with titanium dioxide-graphene oxide as photocatalyst," Environments, 4, 9 (2017).