DOI QR코드

DOI QR Code

Lattice-spring-based synthetic rock mass model calibration using response surface methodology

  • Mariam, Al-E'Bayat (Department of Geosciences and Geological and Petroleum Engineering, Missouri University of Science and Technology) ;
  • Taghi, Sherizadeh (Department of Mining and Explosives Engineering, Missouri University of Science and Technology) ;
  • Dogukan, Guner (Department of Mining and Explosives Engineering, Missouri University of Science and Technology) ;
  • Mostafa, Asadizadeh (Department of Mining and Explosives Engineering, Missouri University of Science and Technology)
  • Received : 2021.11.28
  • Accepted : 2022.12.07
  • Published : 2022.12.10

Abstract

The lattice-spring-based synthetic rock mass model (LS-SRM) technique has been extensively employed in large open-pit mining and underground projects in the last decade. Since the LS-SRM requires a complex and time-consuming calibration process, a robust approach was developed using the Response Surface Methodology (RSM) to optimize the calibration procedure. For this purpose, numerical models were designed using the Box-Behnken Design technique, and numerical simulations were performed under uniaxial and triaxial stress states. The model input parameters represented the models' micro-mechanical (lattice) properties and the macro-scale properties, including uniaxial compressive strength (UCS), elastic modulus, cohesion, and friction angle constitute the output parameters of the model. The results from RSM models indicate that the lattice UCS and lattice friction angle are the most influential parameters on the macro-scale UCS of the specimen. Moreover, lattice UCS and elastic modulus mainly control macro-scale cohesion. Lattice friction angle (flat joint fiction angle) and lattice elastic modulus affect the macro-scale friction angle. Model validation was performed using physical laboratory experiment results, ranging from weak to hard rock. The results indicated that the RSM model could be employed to calibrate LS-SRM numerical models without a trial-and-error process.

Keywords

References

  1. Asadizadeh, M., Moosavi, M. and Hossaini, M.F. (2018), "Investigation of mechanical behaviour of non-persistent jointed blocks under uniaxial compression", Geomech. Eng., 14(1), 29-42. https://doi.org/10.12989/gae.2018.14.1.029.
  2. Babanouri, N., Asadizadeh, M. and Hasan-Alizade, Z. (2020), "Modeling shear behavior of rock joints: A focus on interaction of influencing parameters", Int. J. Rock Mech. Min. Sci., 134. https://doi.org/10.1016/j.ijrmms.2020.104449.
  3. Barla, M., Piovano, G. and Grasselli, G. (2012), "Rock slide simulation with the combined finite-discrete element method", Int. J. Geomech., 12(6), 711-721. https://doi.org/10.1061/(asce)gm.1943-5622.0000204.
  4. Bastola, S. and Cai, M. (2018a), "Investigation of strength and deformation behaviors of intact and jointed granite using lattice-spring-based synthetic rock mass models", Proceedings of the 2nd International Discrete Fracture Network Engineering Conference, DFNE 2018.
  5. Bastola, S. and Cai, M. (2018b), "Simulation of stress-strain relations of Zhenping marble using lattice-spring-based synthetic rock mass models", Proceedings of the 52nd U.S. Rock Mechanics/Geomechanics Symposium.
  6. Bastola, S. and Cai, M. (2019), "Investigation of mechanical properties and crack propagation in pre-cracked marbles using lattice-spring-based synthetic rock mass (LS-SRM) modeling approach", Comput. Geotech., 110, 28-43. https://doi.org/10.1016/j.compgeo.2019.02.009.
  7. Brideau, M.A., Pedrazzini, A., Stead, D., Corey, I., Jaboyedoff, M. and Van Zeyl, D. (2011), "Three-dimensional slope stability analysis of South Peak, Crowsnest Pass, Alberta, Canada", Springer, 8, 139-158. https://doi.org/10.1007/s10346-010-0242-8.
  8. Camones, L.A.M., Vargas, E. do A., de Figueiredo, R.P. and Velloso, R.Q. (2013), "Application of the discrete element method for modeling of rock crack propagation and coalescence in the step-path failure mechanism", Eng. Geol., 153, 80-94. https://doi.org/10.1016/j.enggeo.2012.11.013.
  9. Chehreghani, S., Noaparast, M., Rezai, B. and Shafaei, S.Z. (2017), "Bonded-particle model calibration using response surface methodology", Particuology, 32, 141-152. https://doi.org/10.1016/j.partic.2016.07.012.
  10. Cundall, A.P. (1971), "A computer model for simulating progressive, large-scale movement in blocky rock system", Proceedings of the International Symposium on Rock Mechanics.
  11. Cundall, A.P., and Sainsbury, D. (2011), "Lattice method for modeling brittle, jointed rock, in continuum and distinct element modeling in geomechanics", 12-01, 649-660.
  12. Cundall, A.P., Damjanac, B. and Varun, V. (2016), "Considerations on slope stability in a jointed rock mass", Proceedings of the 50th US Rock Mechanics / Geomechanics Symposium.
  13. Dadashzadeh, N., Duzgun, H.S.B. and Yesiloglu-Gultekin, N. (2017), "Reliability-based stability analysis of rock slopes using numerical analysis and response surface method", Rock Mech. Rock Eng., 50(8), 2119-2133. https://doi.org/10.1007/s00603-017-1206-2.
  14. Di, S.J., Xu, W.Y., Ning, Y., Wang, W. and Wu, G.Y. (2011), "Macro-mechanical properties of columnar jointed basaltic rock masses", J. Central South University of Technology (English Edition), 18(6), 2143-2149. https://doi.org/10.1007/s11771-011-0955-4.
  15. Eberhardt, E., Stead, D., Coggan, J.S. and Willenberg, H. (2003), "Hybrid finite-/discrete-element modelling of progressive failure in massive rock slopes", Proceedings of the 10th ISRM Congress.
  16. Elmo, D. and Stead, D. (2010), "An integrated numerical modelling-discrete fracture network approach applied to the characterisation of rock mass strength of naturally fractured pillars", Rock Mech. Rock Eng., 43(1), 3-19. https://doi.org/10.1007/s00603-009-0027-3.
  17. Farahmand, K., Vazaios, I., Diederichs, M.S. and Vlachopoulos, N. (2018), "Investigating the scale-dependency of the geometrical and mechanical properties of a moderately jointed rock using a synthetic rock mass (SRM) approach", Comput. Geotech., 95, 162-179. https://doi.org/10.1016/j.compgeo.2017.10.002.
  18. Gen-Hua, S. (1989), "Discontinuous deformation analysis a new numerical model for the static and dynamics of block systems", PhD Dissertation, Dept. of Civil Engineering.
  19. Griffiths, D.V. and Fenton, G.A. (2004), "Probabilistic slope stability analysis by finite elements", J. Geotech. Geoenviron. Eng., 130(5), 507-518. https://doi.org/10.1061/(asce)1090-0241(2004)130:5(507).
  20. Havaej, M. and Stead, D. (2016), "Investigating the role of kinematics and damage in the failure of rock slopes", Comput. Geotech., 78, 181-193. https://doi.org/10.1016/j.compgeo.2016.05.014.
  21. Heidarzadeh, S, Saeidi, A. and Rouleau, A. (2017), "Assessing the effect of open stope geometry on rock mass brittle damage using a response surface methodology", Int. J. Rock Mech. Min. Sci., 106, 60-73. https://doi.org/10.1016/j.ijrmms.2018.03.015.
  22. Herrero, C. (2015), "Quantifying the effect of in-situ stresses and pit depth on slope stability by incorporating brittle fracturing in numerical model analyses", PhD thesis, Colorado School of Mines., 194p.
  23. Hu, L., Ghassemi, A., Pritchett, J., Garg, S. and Ishido, T. (2020), "Self-potential response in laboratory scale EGS stimulation", Rock Mech. Rock Eng., 53(2), 691-703. https://doi.org/10.1007/s00603-019-01937-y.
  24. Huang, D., Cen, D., Ma, G. and Huang, R. (2015), "Step-path failure of rock slopes with intermittent joints", Landslides, 12(5), 911-926. https://doi.org/10.1007/s10346-014-0517-6.
  25. Huang, J., Griffiths, D.V. and Fenton, G.A. (2010), "System reliability of slopes by RFEM", Soils Found., 50(3), 343-353. https://doi.org/10.3208/sandf.50.343.
  26. Itasca Consulting Group (2016), SRMTools - User's Guide and Tutorial. SRMTools - Minneapolis, MN, US.
  27. Itasca Consulting Group. (2019), UDEC, User's Manual Version 5.0. Inc., Minneapolis, MN, US.
  28. Jiang, S.H., Li, D.Q., Zhou, C.B. and Zhang, L.M. (2014), "Capabilities of stochastic response surface method and response surface method in reliability analysis", Struct. Eng. Mech., 49(1), 111-128. https://doi.org/10.12989/sem.2014.49.1.111.
  29. Jing, L. (2003), "A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering", Int. J. Rock Mech. Min. Sci., 40(3), 283-353. https://doi.org/10.1016/S1365-1609(03)00013-3.
  30. Johnstone, M.W. and Ooi, J.Y. (2010), "Calibration of DEM models using rotating drum and confined compression measurements", Proceedings of the 6th World Congress on Particle Technology, Nuremberg, Germany.
  31. Karanam, U., Sunwoo, C., Ochoi, S., Chung, S.K. and Reddy, D.V. (2009), "Empirical approaches for designing wide underground openings-A case study", Indexed in Chemical Abstracts-CAS Ref. No.: 172238, 467.
  32. Li, D, Chen, Y., Lu, W. and Zhou, C. (2011), "Stochastic response surface method for reliability analysis of rock slopes involving correlated non-normal variables", Comput. Geotech., 38(1), 58-68. https://doi.org/10.1016/j.compgeo.2010.10.006.
  33. Li, D, Li, Y., Asadizadeh, M., Masoumi, H. and Hagan, P.C. (2020), "Assessing the mechanical performance of different cable bolts based on design of experiments techniques and analysis of variance", Int. J. Rock Mech. Min. Sci., 130, 104307. https://doi.org/10.1016/j.ijrmms.2020.104307.
  34. Li, D.Q., Jiang, S.H., Cheng, Y.G. and Zhou, C.B. (2013), "A comparative study of three collocation point methods for odd order stochastic response surface method", Struct. Eng. Mech., 45(5), 595-611. https://doi.org/10.12989/sem.2013.45.5.595.
  35. Li, D.Q., Qi, X.H., Phoon, K.K., Zhang, L.M. and Zhou, C.B.  (2014), "Effect of spatially variable shear strength parameters with linearly increasing mean trend on reliability of infinite slopes", Struct. Saf., 49, 45-55. https://doi.org/10.1016/j.strusafe.2013.08.005.
  36. Li, X., Huai, Z., Konietzky, H., Li, X. and Wang, Y. (2018), "A numerical study of brittle failure in rocks with distinct microcrack characteristics", Int. J. Rock Mech. Mining Sci., 106, 289-299. https://doi.org/10.1016/j.ijrmms.2018.04.006.
  37. Liu, G., Cai, M. and Huang, M. (2018), "Mechanical properties of brittle rock governed by micro-geometric heterogeneity", Comput. Geotech., 104, 358-372. https://doi.org/10.1016/j.compgeo.2017.11.013.
  38. Meng, Q.X., Wang, H.L., Xu, W.Y. and Chen, Y.L. (2019), "Numerical homogenization study on the effects of columnar jointed structure on the mechanical properties of rock mass", Int. J. Rock Mech. Min. Sci., 124. https://doi.org/10.1016/j.ijrmms.2019.104127.
  39. Miller, D.M. (1984), "Reducing transformation bias in curve fitting", Am. Statistician, 38(2), 124-126. https://doi.org/10.1080/00031305.1984.10483180.
  40. Montgomery, D.C. (2001), "Design and analysis of experiments", John Wiley & Sons, New York.
  41. Morris, J.P., Rubin, M.B., Block, G.I. and Bonner, M.P. (2006), "Simulations of fracture and fragmentation of geologic materials using combined FEM/DEM analysis", Int. J. Impact Eng., 33(1-12), 463-473. https://doi.org/10.1016/j.ijimpeng.2006.09.006.
  42. Oge, I.F. (2018), "Determination of deformation modulus in a weak rock mass by using menard pressuremeter", Int. J. Rock Mech. Min. Sci., 112, 238-252. https://doi.org/10.1016/j.ijrmms.2018.10.009.
  43. Oge, I.F. (2020), "Field evaluation of flexible support system with radial gap (FSRG) under a squeezing rock condition in a coal mine development", Geomech. Geophys. Geo-Energ. Geo-Resour., 6(3), 1-20. https://doi.org/10.1007/s40948-020-00175-9(0123456789.
  44. Oge, I.F. (2021), "Revisiting the assessment of squeezing condition and energy absorption of flexible supports: A mine development case", Tunn. Undergr. Sp. Tech., 108, 103712. https://doi.org/10.1016/j.tust.2020.103712.
  45. Pierce, M., Cundall, P., Potyondy, D. and Mas Ivars, D. (2007), "A synthetic rock mass model for jointed rock", Proceedings of the 1st Canada-US Rock Mechanics Symposium - Rock Mechanics Meeting Challenges and Demands.
  46. Potyondy, D.O. (2015), "The bonded-particle model as a tool for rock mechanics research and application: current trends and future directions", Geosyst. Eng., 18(1), 1-28. https://doi.org/10.1080/12269328.2014.998346.
  47. Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016 /j.ijrmms.2004.09.011. https://doi.org/10.1016/j.ijrmms.2004.09.011
  48. Poulsen, B.A., Adhikary, D.P., Elmouttie, M.K. and Wilkins, A. (2015), "Convergence of synthetic rock mass modelling and the Hoek-Brown strength criterion", Int. J. Rock Mech. Min. Sci., 80, 171-180. https://doi.org/10.1016/j.ijrmms.2015.09.022.
  49. Rasmussen, L.L., Cacciari, P.P., Futai, M.M., de Farias, M.M. and de Assis, A.P. (2019), "Efficient 3D probabilistic stability analysis of rock tunnels using a lattice model and cloud computing", Tunn. Undergr. Sp. Tech., 85, 282-293. https://doi.org/10.1016/j.tust.2018.12.022.
  50. Sarfarazi, V., Haeri, H. and Khaloo, A. (2016), "The effect of non-persistent joints on sliding direction of rock slopes modified fish-bone model and cost-effective analyses View project The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/cac.2016.17.6.723.
  51. Scholtes, L. and Donze, F. V. (2015), "A DEM analysis of step-path failure in jointed rock slopes", Comptes Rendus - Mecanique, 343(2), 155-165. https://doi.org/10.1016/j.crme.2014.11.002
  52. Turichshev, A. and Hadjigeorgiou, J. (2017), "Development of synthetic rock mass bonded block models to simulate the behaviour of intact veined rock",Geotech. Geol. Eng., 35(1), 313-335. https://doi.org/10.1007/s10706-016-0108-5.
  53. Vallejos, J.A., Suzuki, K., Brzovic, A. and Ivars, D.M. (2016), "Application of Synthetic Rock Mass modeling to veined core-size samples", Int. J. Rock Mech. Min. Sci., 81, 47-61. https://doi.org/10.1016/j.ijrmms.2015.11.003.
  54. Wang, X. and Yan, Y. (2020), "Scale effect of mechanical properties of jointed rock mass: A numerical study based on particle flow code", Geomech. Eng., 21(3), 259-268.. https://doi.org/10.12989/gae.2020.21.3.259.
  55. Xu, Z.H., Wang, W.Y., Lin, P., Xiong, Y., Liu, Z.Y. and He, S.J. (2020), "A parameter calibration method for PFC simulation: Development and a case study of limestone", Geomech. Eng., 22(1), 97-108. https://doi.org/10.12989/gae.2020.22.1.097.
  56. Yoon, J. (2007), "Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation", Int. J. Rock Mech. Min. Sci., 44(6), 871-889. https://doi.org/10.1016/j.ijrmms.2007.01.004.
  57. Zhou, X. and Chen, J. (2019), "Extended finite element simulation of step-path brittle failure in rock slopes with non-persistent en-echelon joints", Eng. Geol., 250, 65-88. https://doi.org/10.1016/j.enggeo.2019.01.012.