DOI QR코드

DOI QR Code

A Comparative Analysis of Motor Imagery, Execution, and Observation for Motor Imagery-based Brain-Computer Interface

움직임 상상 기반 뇌-컴퓨터 인터페이스를 위한 운동 심상, 실행, 관찰 뇌파 비교 분석

  • Daeun, Gwon (Department of Computer Science and Electrical Engineering, Handong Global University) ;
  • Minjoo, Hwang (School of Computer Science and Electrical Engineering, Handong Global University) ;
  • Jihyun, Kwon (School of Computer Science and Electrical Engineering, Handong Global University) ;
  • Yeeun, Shin (School of Computer Science and Electrical Engineering, Handong Global University) ;
  • Minkyu, Ahn (Department of Computer Science and Electrical Engineering, Handong Global University)
  • 권다은 (한동대학교 전산전자공학과) ;
  • 황민주 (한동대학교 전산전자공학부) ;
  • 권지현 (한동대학교 전산전자공학부) ;
  • 신예은 (한동대학교 전산전자공학부) ;
  • 안민규 (한동대학교 전산전자공학과)
  • Received : 2022.10.19
  • Accepted : 2022.11.18
  • Published : 2022.12.31

Abstract

Brain-computer interface (BCI) is a technology that allows users with motor disturbance to control machines by brainwaves without a physical controller. Motor imagery (MI)-BCI is one of the popular BCI techniques, but it needs a long calibration time for users to perform a mental task that causes high fatigue to the users. MI is reported as showing a similar neural mechanism as motor execution (ME) and motor observation (MO). However, integrative investigations of these three tasks are rarely conducted. In this study, we propose a new paradigm that incorporates three tasks (MI, ME, and MO) and conducted a comparative analysis. For this study, we collected Electroencephalograms (EEG) of motor imagery/execution/observation from 28 healthy subjects and investigated alpha event-related (de)synchronization (ERD/ERS) and classification accuracy (left vs. right motor tasks). As result, we observed ERD and ERS in MI, MO and ME although the timing is different across tasks. In addition, the MI showed strong ERD on the contralateral hemisphere, while the MO showed strong ERD on the ipsilateral side. In the classification analysis using a Riemannian geometry-based classifier, we obtained classification accuracies as MO (66.34%), MI (60.06%) and ME (58.57%). We conclude that there are similarities and differences in fundamental neural mechanisms across the three motor tasks and that these results could be used to advance the current MI-BCI further by incorporating data from ME and MO.

Keywords

Acknowledgement

본연구는과학기술정보통신부와정보통신기획평가원의소프트웨어중심대학지원사업(2017-0-00130), 한국연구재단(No. 2021R1I1A3060828) 및 과학기술정보통신부와 한국여성과학기술인육성재단의 과학기술정보통신부 여대학원생공학연구팀제 지원사업(WISET-2022-118) 과제의 지원을 받아 수행하였음.

References

  1. Grigorescu SM, Luth T, Fragkopoulos C, Cyriacks M, Graser A. A BCI-controlled robotic assistant for quadriplegic people in domestic and professional life. Robotica 2012;30(3):419-31. https://doi.org/10.1017/s0263574711000737
  2. Kim KT, Suk HI, Lee SW. Commanding a Brain-Controlled Wheelchair Using Steady-State Somatosensory Evoked Potentials. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2018;26(3):654-65. https://doi.org/10.1109/tnsre.2016.2597854
  3. Guy V, Soriani MH, Bruno M, Papadopoulo T, Desnuelle C, Clerc M. Brain computer interface with the P300 speller: Usability for disabled people with amyotrophic lateral sclerosis. Annals of Physical and Rehabilitation Medicine 2018;61(1):5-11. https://doi.org/10.1016/j.rehab.2017.09.004
  4. Khan MA, Das R, Iversen HK, Puthusserypady S. Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application. Computers in Biology and Medicine 2020;123:103843.
  5. Robin N, Dominique L, Toussaint L, Blandin Y, Guillot A, Her ML. Effects of motor imagery training on service return accuracy in tennis: The role of imagery ability. International Journal of Sport and Exercise Psychology 2007;5(2):175-86. https://doi.org/10.1080/1612197X.2007.9671818
  6. Schnitzler A, Salenius S, Salmelin R, Jousmaki V, Hari R. Involvement of primary motor cortex in motor imagery: a neuromagnetic study. Neuroimage 1997;6(3):201-8. https://doi.org/10.1006/nimg.1997.0286
  7. Hardwick RM, Caspers S, Eickhoff SB, Swinnen SP. Neural correlates of action: Comparing meta-analyses of imagery, observation, and execution. Neuroscience & Biobehavioral Reviews 2018;94:31-44. https://doi.org/10.1016/j.neubiorev.2018.08.003
  8. Pfurtscheller G. Chapter 26 Spatiotemporal ERD/ERS patterns during voluntary movement and motor imagery. In: Ambler Z, Nevsimalova S, Kadanka Z, Rossini PM, editors. Supplements to Clinical Neurophysiology. Elsevier; 2000. pp. 196-8.
  9. Jeon Y, Nam CS, Kim YJ, Whang MC. Event-related (De)synchronization (ERD/ERS) during motor imagery tasks: Implications for brain-computer interfaces. International Journal of Industrial Ergonomics 2011;41(5):428-36. https://doi.org/10.1016/j.ergon.2011.03.005
  10. Neuper C, Wortz M, Pfurtscheller G. ERD/ERS patterns reflecting sensorimotor activation and deactivation. In: Neuper C, Klimesch W, editors. Progress in Brain Research. Elsevier; 2006. pp. 211-22.
  11. Lacourse MG, Orr ELR, Cramer SC, Cohen MJ. Brain activation during execution and motor imagery of novel and skilled sequential hand movements. NeuroImage 2005;27(3):505-19. https://doi.org/10.1016/j.neuroimage.2005.04.025
  12. Vogt S, Di Rienzo F, Collet C, Collins A, Guillot A. Multiple roles of motor imagery during action observation. Front Hum Neurosci 2013;7:807.
  13. Eaves DL, Riach M, Holmes PS, Wright DJ. Motor Imagery during Action Observation: A Brief Review of Evidence, Theory and Future Research Opportunities. Frontiers in Neuroscience 2016;10.
  14. Castro F, Bryjka PA, Di Pino G, Vuckovic A, Nowicky A, Bishop D. Sonification of combined action observation and motor imagery: Effects on corticospinal excitability. Brain and Cognition 2021;152:105768.
  15. Romano-Smith S, Wood G, Wright DJ, Wakefield CJ. Simultaneous and alternate action observation and motor imagery combinations improve aiming performance. Psychology of Sport and Exercise 2018;38:100-6. https://doi.org/10.1016/j.psychsport.2018.06.003
  16. Gurkok H, Nijholt A. Brain-Computer Interfaces for Multimodal Interaction: A Survey and Principles. International Journal of Human-Computer Interaction 2012;28(5):292-307. https://doi.org/10.1080/10447318.2011.582022
  17. Edlinger G, Allison BZ, Guger C. How Many People Can Use a BCI System? In: Kansaku K, Cohen LG, Birbaumer N, editors. Clinical Systems Neuroscience. Tokyo: Springer Japan; 2015. p. 33-66.
  18. Lee MH, Kwon OY, Kim YJ, Kim HK, Lee YE, Williamson J, Fazli S, Lee SW. EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy. GigaSience 2019;8.
  19. Talukdar U, Hazarika SM, Gan JQ. Motor imagery and mental fatigue: inter-relationship and EEG based estimation. J Comput Neurosci 2019;46(1):55-76. https://doi.org/10.1007/s10827-018-0701-0
  20. Ruff RM, Parker SB. Gender- and Age-Specific Changes in Motor Speed and Eye-Hand Coordination in Adults: Normative Values for the Finger Tapping and Grooved Pegboard Tests. Percept Mot Skills 1993;76(3_suppl):1219-30. https://doi.org/10.2466/pms.1993.76.3c.1219
  21. Yang YJ, Jeon EJ, Kim JS, Chung CK. Characterization of kinesthetic motor imagery compared with visual motor imageries. Sci Rep 2021;11(1):3751.
  22. Blankertz B, Tomioka R, Lemm S, Kawanabe M, Muller K. Optimizing Spatial filters for Robust EEG Single-Trial Analysis. IEEE Signal Processing Magazine 2008;25(1):41-56. https://doi.org/10.1109/MSP.2008.4408441
  23. Barachant A, Bonnet S, Congedo M, Jutten C. Riemannian geometry applied to BCI classification. In: Vigneron, Zarzoso V;, Moreau V;, Gribonval E;, Vincent R;, E. (Eds.), editors. LVA/ICA 2010 - 9th International Conference on Latent Variable Analysis and Signal Separation. Saint-Malo, France: Springer; 2010. p. 629-36. (Series: Lecture Notes in Computer Science. Subseries: Theoretical Computer Science and General Issues; vol. 6365).
  24. Fletcher PT, Joshi S. Principal Geodesic Analysis on Symmetric Spaces: Statistics of Diffusion Tensors. In: Sonka M, Kakadiaris IA, Kybic J, editors. Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis. Berlin, Heidelberg: Springer; 2004;87-98.
  25. Pfurtscheller G. Functional brain imaging based on ERD/ERS. Vision Research 2001;41(10):1257-60. https://doi.org/10.1016/S0042-6989(00)00235-2
  26. Cho H, Ahn M, Ahn S, Kwon M, Jun SC. EEG datasets for motor imagery brain-computer interface. Gigascience 2017;6(7).
  27. Lorey B, Bischoff M, Pilgramm S, Stark R, Munzert J, Zentgraf K. The embodied nature of motor imagery: the influence of posture and perspective. Exp Brain Res 2009;194(2):233-43. https://doi.org/10.1007/s00221-008-1693-1
  28. Nam CS, Jeon Y, Kim YJ, Lee I, Park K. Movement imagery-related lateralization of event-related (de)synchronization (ERD/ERS): Motor-imagery duration effects. Clinical Neurophysiology 2011;122(3):567-77. https://doi.org/10.1016/j.clinph.2010.08.002
  29. Lui KK, Nunez MD, Cassidy JM, Vandekerckhove J, Cramer SC, Srinivasan R. Timing of Readiness Potentials Reflect a Decision-making Process in the Human Brain. Comput Brain Behav 2021;4(3):264-83.
  30. Wang K, Xu M, Wang Y, Zhang S, Chen L, Ming D. Enhance decoding of pre-movement EEG patterns for brain-computer interfaces. J Neural Eng 2020;17(1):016033.