References
- Al-Thiry, H. (2016), "A modified single degree of freedom method for the analysis of building steel columns subjected to explosion induced blast load", Int. J. Impact Eng., 94, 120-133. https://doi.org/10.1016/j.ijimpeng.2016.04.007.
- Baker, W.E., Cox, P.A., Westine, P.S., Kulesz, J.J. and Strehlow, R.A. (1983), Explosion Hazards and Evaluation, Elsevier Science Publishing Company Inc., New York.
- Borvik, T., Hanssen, A.G., Langseth, M. and Olovsson, L. (2009), "Response of structures to planar blast loads-A finite element engineering approach", Comput. Struct., 87(9), 507-20. https://doi.org/10.1016/j.compstruc.2009.02.005.
- Castedo, R., Segarra, P., Alanon, A., Lopez, L.M., Santos, A.P. and Sanchidrian, J.A. (2015), "Air blast resistance of full-scale slabs with different compositions: Numerical modeling and field validation", Int. J. Impact Eng., 86, 145-156. https://doi.org/10.1016/j.ijimpeng.2015.08.004.
- Cormie, D., Mays, G. and Smith, P. (2009), Blast Effects on Buildings, 2nd Edition, Thomas Telford, London, UK.
- Cui, L., Zhang, X. and Hao, H. (2021), "Improved analysis method for structural members subjected to blast loads considering strain hardening and softening effects", Adv. Struct. Eng., 24, 2622-2636. https://doi.org/10.1177/13694332211007382.
- El-Dakhakhni, W.W., Mekky, W.F. and Changiz Rezaei, S.H. (2010), "Validity of SDOF models for analyzing two-way reinforced concrete panels under blast loading", J. Perform. Constr. Facil., 24, 311-325. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000090.
- Feldgun, V.R., Yankelevsky, D.Z. and Karinski, Y.S. (2016), "A nonlinear SDOF model for blast response simulation of elastic thin rectangular plates", Int. J. Impact Eng., 88, 172-188. https://doi.org/10.1016/j.ijimpeng.2015.09.001.
- Fischer, K. and Haring, I. (2009), "SDOF response model parameters from dynamic blast loading experiments", Eng. Struct., 31, 1677-1686. https://doi.org/10.1016/j.engstruct.2009.02.040.
- Hamra, L., Demonceau, J.F. and Denoel, V. (2015), "Pressureimpulse diagram of a beam developing non-linear membrane action under blast loading", Int. J. Impact Eng., 86, 188-205. doi.org/10.1016/j.ijimpeng.2015.07.003
- Kahn, R., Farooq, S.H. and Usman, M. (2019), "Blast loading response of reinforced concrete panels externally reinforced with steel strips", Infrastruct., 4, 54. https://doi.org/10.3390/infrastructures4030054.
- Ki, J.H. and Park, J.Y. (2020), "Simple P-I diagram for structural components based on support rotation angle criteria", Adv. Concrete Constr., 10(6), 509-514. http://doi.org/10.12989/acc.2020.10.6.509.
- Ki, J.H., Park, J.Y. and Seong, J.H. (2019), "Effect of one way reinforced concrete slab characteristics on structural response under blast loading", Adv. Concrete Constr., 8(4), 277-283. https://doi.org/10.12989/acc.2019.8.4.277.
- Krauthammer, T. (2008), Modern Protective Structures, CRC Press Taylor & Francis Group.
- Li, Q.M. and Meng, H. (2002), "Pressure-impulse diagram for blast loads based on dimensional analysis and single-degree-offreedom model", J. Eng. Mech., 128(1), 87-92. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:1(87).
- Liu, Y., Yan, J. and Huang, F. (2018), "Behavior of reinforced concrete beam and columns subjected to blast loading", Defen. Technol., 14, 550-559. https://doi.org/10.1016/j.dt.2018.07.026.
- Malvar, L.J. and Crawford, J.E. (1998a), "Dynamic increase factors for concrete", Twenty-Eighth DDESB Seminar, Orlando, FL, August,
- Malvar, L.J. and Crawford, J.E. (1998b), "Dynamic increase factors for steel reinforcing bars", Twenty-Eighth DDESB Seminar, Orlando, FL, August.
- Moaveni, S. (2008), Finite Element Analysis, Pearson Education. U.S.A:
- Oswald, C.J. and Skerhut, D. (1993) FACEDAP User's Manual, Omaha District, Southwest Research Institute and U.S. Army Corps of Engineers.
- Park, R. and Gamble, W.L. (2000), Reinforced Concrete Slabs, Wiley, Canada.
- Rigby, S.E., Tyas, A. and Bennett, T. (2014), "Elastic-plastic response of plates subjected to cleared blast loads", Int. J. Impact Eng., 66, 37-47. https://doi.org/10.1016/j.ijimpeng.2013.12.006.
- Sung, S.H. and Lee, H. (2021). "Performance enhancement of SDOF system for a two-way all-fixed RC slab based on a modified plastic-damage hysteretic model", Struct. Eng. Mech., 80(4), 443-454. https://doi.org/10.12989/sem.2021.80.4.443.
- Thiagarajan, G., Kadambi, A.V., Robert, S. and Johnson, C.F. (2015), "Experimental and finite element analysis of doubly reinforced concrete slabs subjected to blast loads", Int. J. Impact Eng., 75, 162-173. https://doi.org/10.1016/j.ijimpeng.2014.07.018.
- U.S. Army Corps of Engineers (2008a), Methodology Manual for the Single-Degree-Of Freedom Blast Effects Design Spreadsheets (SBEDS), 1.1-10.4, PDC-TR-06-01.
- U.S. Army Corps of Engineers (2008b), Single Degree of Freedom Structural Response Limits for Antiterrorism Design, 1.1-5.4, PDC-TR-06-08.
- U.S. DOD (Department of Defence) (2008), Structures to Resist the Effects of Accidental Explosions, US DoD, 1-1867.UFC 3-340-02, Washington DC, USA.
- Wang, W., Zhang, D. and Lu, F. (2012), "The influence of load pulse shape on pressure-impulse diagrams of one-way RC slabs", Struct. Eng. Mech., 42(3), 363-381. http://doi.org/10.12989/sem.2012.42.3.363.
- Wang, W., Zhang, D., Lu, F. and Liu, R. (2013), "A new SDOF method of one-way reinforced concrete slab under non-uniform blast loading", Struct. Eng. Mech., 46(5), 595-613. https://doi.org/10.12989/sem.2013.46.5.595.
- Wu, C. and Sheikh, H. (2013), "A finite element modeling to investigate the mitigation of blast effects on reinforced concrete panel using foam cladding", Int. J. Impact Eng., 55, 24-33. https://doi.org/10.1016/j.ijimpeng.2012.11.006.