DOI QR코드

DOI QR Code

Effect of the circle tunnel on induced force distribution around underground rectangular gallery using theoretical approach, experimental test and particle flow code simulation

  • Received : 2021.12.21
  • Accepted : 2022.11.11
  • Published : 2022.12.10

Abstract

In this study, the effect of circle tunnel on the force distribution around underground rectangular gallery was investigated using theoretical approach, experimental test and Particle flow code simulation (PFC). Gypsum model with dimension of 1500×1500 mm was built. Tensile strength of material was 1 MPa. Dimension of central gallery was 100 mm×200 mm and diameter of adjacent tunnel in its right side was 20 mm, 40 mm and 60 mm. Horizontal distance between tunnel wall and gallery edge were 25, 50, 75, 100 and 125 mm. using beam theory, the effect of tunnel diameter and distance between tunnel and gallery on the induced force around gallery was analyzed. In the laboratory test, the rate of loading displacement was set to 0.05 millimeter per minute. Also sensitivity analysis has been done. Using PFC2D, interaction between tunnel and gallery was simulated and its results were compared with experimental and theoretical analysis. The results show that the tensile force concentration has maximum value in center of the rectangular space. The tensile force concentration at the right side of the axisymmetric line of gallery has more than its value in the left side of the galleries axisymmetric line. The tensile force concentration was decreased by increasing the distance between tunnel and rectangular space. In whole of the configurations, the angles of micro cracks fluctuated between 75 and 105 degrees, which mean that the variations of tunnel situation have not any influence on the fracture angle.

Keywords

References

  1. Aatef, D. (2021), "Generalized thermo-elastic interaction in a fiber-reinforced material with spherical holes", Struct. Eng. Mech., 78(3), 99-111. https://doi.org/10.12989/sem.2021.78.3.297.
  2. Baaskaran, N., Ponappa, K. and Shankar, S. (2019), "Study of the effect of varying shapes of holes in energy absorption characteristics on aluminium circular windowed tubes under quasi-static loading", Struct. Eng. Mech., 70(2), 88-99. https://doi.org/10.12989/sem.2019.70.2.153.
  3. Basu, A., Mishra, D.A. and Roychowdhury, K. (2013), "Rock failure modes under uniaxial compression, Brazilian, and point load tests", Bull. Eng. Geol Environ., 72, 457-475. https://doi.org/10.1007/s10064-013-0505-4.
  4. Cho, N., Martin, C.D. and Sego, D.C. (2007), "A clumped particle model for rock", Int. J. Rock Mech. Min. Sci., 44, 997-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002.
  5. Gao, F., Stead, D. and Coggan, J. (2014), "Evaluation of coal longwall caving characteristics using an innovative UDEC Trigon approach", Comput. Geotech., 55, 448-460. https://doi.org/10.1016/j.compgeo.2013.09.020.
  6. Gao, F., Stead, D. and Kang, H. (2015), "Numerical simulation of squeezing failure in a coal mine roadway due to mining-induced stresses", Rock Mech. Rock Eng., 48, 1635-1645. https://doi.org/10.1007/s00603-014-0653-2.
  7. Guo, H., Yuan, L., Shen, B., Qu, Q. and Xue, J. (2012), "Mininginduced strata stress changes, fractures and gas flow dynamics in multi-seam longwall mining", Int. J. Rock Mech. Min. Sci., 54, 129-139. https://doi.org/10.1016/j.ijrmms.2012.05.023.
  8. He, M., Wang, Y., Yang, J., Zhou, P., Gao, Q. and Gao, Y. (2018), "Comparative analysis on stress field distributions in roof cutting non-pillar mining method and conventional mining method", J. Chin. Coal Soc., 43(3), 626-637. https://doi.org/10.13225/j.cnki.jccs.2017.0969.
  9. He, M., Zhu, G. and Guo, Z. (2015), "Longwall mining cutting cantilever beam theory and 110 mining method in China-The third mining science innovation", J. Rock Mech. Geotech. Eng., 7(5), 483-492. https://doi.org/10.1016/j.jrmge.2015.07.002.
  10. Islam, M.R., Hayashi, D. and Kamruzzaman, A. (2009), "Finite element modeling of stress distributions and problems for multislice longwall mining in Bangladesh, with special reference to the Barapukuria coal mine", Int. J. Coal Geol., 78, 91-109. https://doi.org/10.1016/j.coal.2008.10.006.
  11. Jiang, Y., Wang, H., Xue, S., Zhao, Y., Zhu, J. and Pang, X. (2012), "Assessment and mitigation of coal bump risk during extraction of an island longwall panel", Int. J. Coal Geol., 95, 20-33. https://doi.org/10.1016/j.coal.2012.02.003.
  12. Kaiser, P., Yazici, S. and Maloney, S. (2001), "Mining-induced stress change and consequences of stress path on excavation stability-A case study", Int. J. Rock Mech. Min., 38, 167-180. https://doi.org/10.1016/S1365-1609(00)00038-1.
  13. Kang, H., Wu, L., Gao, F., Lv, H. and Li, J. (2019), "Field study on the load transfer mechanics associated with longwall coal retreat mining", Int. J. Rock Mech. Min., 124, 1-10. https://doi.org/10.1016/j.ijrmms.2019.104141.
  14. Kelly, M., Luo, X. and Craig, S. (2002), "Integrating tools for longwall geomechanics assessment", Int. J. Rock Mech. Min., 39, 661-676. https://doi.org/10.1016/S1365-1609(02)00063-1.
  15. Liu, W. and Zhou, Y. (2019), "Numerical modelling of bottomhole rock in underbalanced drilling using thermoporoelastoplasticity model", Struct. Eng. Mech., 69(5), 101-111. https://doi.org/10.12989/sem.2019.69.5.537.
  16. Mark, C. and Gadde, M. (2010), "Global trends in coal mine horizontal stress measurements", Proceedings of the 2010 Coal Operators' Conference, Mining Engineering, University of Wollongong, February.
  17. Mark, C., Gale, W., Oyler, D. and Chen, J. (2007), "Case history of the response of a longwall entry subjected to concentrated horizontal stress", Int. J. Rock Mech. Min. Sci., 44(2), 210-221. https://doi.org/10.1016/j.ijrmms.2006.06.005.
  18. Mohammadzadeh, B. (2018), "Comprehensive investigation of buckling behavior of plates considering effects of holes", Struct. Eng. Mech., 68(2), 66-78. https://doi.org/10.12989/sem.2018.68.2.261.
  19. Potyondy, D.O. (2012), "A flat-jointed bonded-particle material for hard rock", Proceedings of the 46th US Rock Mechanics Symposium, Chicago, USA, June.
  20. Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41, 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
  21. Rezaei, M., Hossaini, M.F. and Majdi, A. (2015), "Determination of longwall mining-induced stress using the strain energy method", Rock Mech. Rock Eng., 48, 2421-2433. https://doi.org/10.1007/S00603-014-0704-8.
  22. Shabanimashcool, M. and Li, C.C. (2012), "Numerical modelling of longwall mining and stability analysis of the gates in a coal mine", Int. J. Rock Mech. Min. Sci., 51, 24-34. https://doi.org/10.1016/j.ijrmms.2012.02.002.
  23. Shabanimashcool, M. and Li, C.C. (2013), "A numerical study of stress changes in barrier pillars and a border area in a longwall coal mine", Int. J. Coal Geol., 106, 39-47. https://doi.org/10.1016/j.coal.2012.12.008.
  24. Singh, A.K., Singh, R., Maiti, J., Kumar, R. and Mandal, P. (2011a), "Assessment of mining induced stress development over coal pillars during depillaring", Int. J. Rock Mech. Min., 48, 805-818. https://doi.org/10.1016/j.ijrmms.2011.04.004.
  25. Singh, R., Singh, A.K., Maiti, J., Mandal, P.K., Singh, R. and Kumar, R. (2011b), "An observational approach for assessment of dynamic loading during underground coal pillar extraction", Int. J. Rock Mech. Min. Sci., 48(5), 794-804. https://doi.org/10.1016/j.ijrmms.2011.04.003.
  26. Sinha, S. and Walton, G. (2019), "Investigation of longwall headgate stress distribution with an emphasis on pillar behavior", Int. J. Rock Mech. Min., 121, 1-13. https://doi.org/10.1016/j.ijrmms.2019.06.008.
  27. Soltaninezhad, S. (2020), "Investigation the fracture behavior of high-density polyethylene PE80 weakened by inclined U-notch with end hole", Struct. Eng. Mech., 74(5), 77-88. https://doi.org/10.12989/sem.2020.74.5.601.
  28. Wang, H., Jiang, Y., Zhao, Y., Zhu, J. and Liu, S. (2013), "Numerical investigation of the dynamic mechanical state of a coal pillar during longwall mining panel extraction", Rock Mech. Rock Eng., 46, 1211-1221. https://doi.org/10.1007/s00603-012-0337-8.
  29. Wang, J., Yu, B., Kang, H., Wang, G., Mao, D., Liang, Y. and Jiang, P. (2015), "Key technologies and equipment for a fully mechanized top-coal caving operation with a large mining height at ultra-thick coal seams", Int. J. Coal Sci. Technol., 2, 97-161. https://doi.org/10.1007/s40789-015-0071-4
  30. Wu, Y. (2020), "Influence of neck width on the performance of ADAS device with diamond-shaped hole plates", Struct. Eng. Mech., 74(1), 123-135. https://doi.org/10.12989/sem.2020.74.1.019.
  31. Xie, S., Li, S. and Huang, X. (2015), "Surrounding rock principal stress difference evolution law and control of gob-side entry driving in deep mine", J. Chin. Coal Soc., 40, 2355-2360. https://doi.org/10.1155/2020/1961680.
  32. Xue, D., Zhou, J., Liu, Y. and Gao, L (2020), "On the excavation-induced stress drop in damaged coal considering a coupled yield and failure criterion", Int. J. Coal Sci. Technol., 7(1), 58-67. https://doi.org/10.1007/s40789-020-00299-z.
  33. Yang, W., Lin, B.Q., Qu, Y.A., Li, Z.W., Zhai, C., Jia, L.L. and Zhao, W.Q. (2011), "Stress evolution with time and space during mining of a coal seam", Int. J. Rock Mech. Min. Sci., 48(7), 1145-52. https://doi.org/10.1016/j.ijrmms.2011.07.006.
  34. Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143.
  35. Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.
  36. Yaylaci, M., Eyuboglu, A., Adiyaman, G., Uzun Yaylaci, E., O ner, E. and Birinci, A. (2021), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 21(3), 66-77. https://doi.org/10.1016/j.mechmat.2020.103730.