DOI QR코드

DOI QR Code

Seismic response of combined retaining structure with inclined rock slope

  • Yu-liang, Lin (School of Civil Engineering, Central South University) ;
  • Jie, Jin (School of Civil Engineering, Central South University) ;
  • Zhi-hao, Jiang (China Construction Third Engineering Bureau Co. Ltd.) ;
  • Wei, Liu (China Construction Third Engineering Bureau Co. Ltd.) ;
  • Hai-dong, Liu (China Construction Third Engineering Bureau Co. Ltd.) ;
  • Rou-feng, Li (China Construction Third Engineering Bureau Co. Ltd.) ;
  • Xiang, Liu (Joint International Research Laboratory of Key Technology for Rail Traffic Safety, Central South University)
  • Received : 2020.11.07
  • Accepted : 2022.11.04
  • Published : 2022.12.10

Abstract

A gravity wall combined with an anchoring lattice frame (a combined retaining structure) is adopted at a typical engineering site at Dali-Ruili Railway Line China. Where, the combined retaining structure supports a soil deposit covering on different inclined rock slopes. With an aim to investigate and compare the effects of inclined rock slopes on the response of combined retaining structure under seismic excitation, three groups of shaking table tests are conducted. The rock slopes are shaped as planar surfaces inclined at angles of 20°, 30°, and 40° with the horizontal, respectively. The shaking table tests are supplemented by dynamic numerical simulations. The results regarding the horizontal acceleration response, vertical acceleration response, permanent displacement mode, and axial anchor force are comparatively examined. The acceleration response is more susceptible to outer structural profile of combined retaining structure than to inclined angle of rock slope. The permanent displacement decreases when the inclined angle of the rock slope increases within a range of 20°-40°. A critical inclined angle of rock slope exists within a range of 20°-40°, and induces the largest axial anchor force in the combined retaining structure.

Keywords

Acknowledgement

This work is supported by the National Natural Science Foundation of China (Grant Nos. 51878667, 51678571, 51308551, 51778486), the Hunan Provincial Natural Science Foundation of China (Grant Nos. 2021JJ30830, 2018JJ2517, 13JJ4017). The comments on this paper from two anonymous reviewers are highly appreciated that are helpful to improve the quality of this paper. The first author also gratefully acknowledge the financial support from the China Scholarship Council (Grant No. 201806375024).

References

  1. Aminpoor, M.M. and Ghanbari, A. (2014), "Design charts for yield acceleration and seismic displacement of retaining walls with surcharge through limit analysis", Struct. Eng. Mech., 52(6), 1225-1256. https://doi.org/10.12989/sem.2014.52.6.1225.
  2. An, J.S., Yoon, Y.W. and Song, K.I. (2018), "Feasibility study of an earth-retainingstructure using in-situ soil with dual sheet piles", Geomech. Eng., 16(3), 321-329. https://doi.org/10.12989/gae.2018.16.3.321.
  3. Anastasopoulos, I., Georgarakos, T., Georgiannou, V., Drosos, V. and Kourkoulis, R. (2010), "Seismic performance of bar-mat reinforced-soil retaining wall: Shaking table testing versus numerical analysis with modified kinematic hardening constitutive model", Soil Dyn. Earthq. Eng., 30(10), 1089-1105. https://doi.org/10.1016/j.soildyn.2010.04.020.
  4. Chen, G., Chen, S., Zuo, X., Du, X., Qi, C. and Wang, Z. (2015), "Shaking-table tests and numerical simulations on a subway structure in soft soil", Soil Dyn. Earthq. Eng., 76, 13-28. https://doi.org/10.1016/j.soildyn.2014.12.012.
  5. Chen, T., Zhou, K., Wei, J., Liu, X.C., Lin, Y.L., Zhang, J. and Shen, Q. (2020), "Analysis on the excavation influence of triangular-distribution tunnels for the wind pavilion group of a metro station", J. Cent. South Univ., 27(12), 3852-3874. https://doi.org/10.1007/s11771-020-4468-x.
  6. Deyanova, M., Lai, C.G. and Martinelli, M. (2016), "Displacement-based parametric study on the seismic response of gravity earth-retaining walls", Soil Dyn. Earthq. Eng., 80, 210-224. https://doi.org/10.1016/j.soildyn.2015.10.012.
  7. Dong, J.H., Zhu, Y.P., Zhou, Y. and Ma, W.(2010), "Dynamic calculation model and seismic response for frame supporting structure with prestressed anchors", Sci. China Technol. Sci., 53(7), 1957-1966. https://doi.org/10.1007/s11431-010-3241-z.
  8. Fukumoto, Y., Yoshida, J., Sakaguchi, H. and Murakami, A. (2014), "The effects of block shape on the seismic behavior of dry-stone masonry retaining walls: A numerical investigation by discrete element modeling", Soils Found., 54(6), 1117-1126. https://doi.org/10.1016/j.sandf.2014.11.007.
  9. Ghazavi, M., Ravanshenas, P. and Lavasan, A.A. (2014), "Analytical and numerical solution for interaction between batter pile group", KSCE J. Civil Eng., 18(7), 2051-2063. https://doi.org/10.1007/s12205-014-0082-5.
  10. Gursoy, S. and Durmus, A. (2009), "Investigation of linear and nonlinear of behaviours of reinforced concrete cantilever retaining walls according to the earthquake loads considering soil-structures interactions", Struct. Eng. Mech., 31(1), 75-91. https://doi.org/10.12989/sem.2009.31.1.075.
  11. Huang, Y., Hu, H. and Xiong, M. (2018), "Probability density evolution method for seismic displacement-based assessment of earth retaining structures", Eng. Geol., 234, 167-173. https://doi.org/10.1016/j.enggeo.2018.01.019.
  12. Javdanian, H. and Pradhan, B. (2019), "Assessment of earthquake-induced slope deformation of earth dams using soft computing techniques", Landslid., 16(1), 91-103. https://doi.org/10.1007/s10346-018-1078-x.
  13. Kloukinas, P., Scotto di Santolo, A., Penna, A., Dietz, M., Evangelista, A., Simonelli, A.L., Taylor, C. and Mylonakis, G. (2015), "Investigation of seismic response of cantilever retaining walls: Limit analysis vs shaking table testing", Soil Dyn. Earthq. Eng., 77, 432-445. https://doi.org/10.1016/j.soildyn.2015.05.018.
  14. Latha, G.M. and Santhanakumar, P. (2015), "Seismic response of reduced-scale modular block and rigid faced reinforced walls through shaking table tests", Geotext. Geomembr., 43(4), 307-416. https://doi.org/10.1016/j.geotexmem.2015.04.008.
  15. Lee, J., Liu, Q. and Park, H.J. (2019) "effect of earthquake motion on the permanent displacement of embankment slopes", KSCE J. Civil Eng. 23(10), 4174-4189. https://doi.org/10.1007/s12205-019-1833-0.
  16. Lee, S.W. (2019), "Experimental study on effect of underground excavation distance on the behavior of retaining wall", Geomech. Eng., 17(5), 413-420. https://doi.org/10.12989/gae.2019.17.5.413.
  17. Lin, Y.L. and Yang, G.L. (2013), "Dynamic behavior of railway embankment slope subjected to seismic excitation", Nat. Hazard., 69(1), 219-235. http://doi.org/10.1007/s11069-013-0701-3.
  18. Lin, Y.L., Cheng, X.M. and Yang, G.L. (2018a), "Shaking table test and numerical simulation on a combined retaining structure response to earthquake loading", Soil Dyn. Earthq. Eng., 108, 29-45. https://doi.org/10.1016/j.soildyn.2018.02.008.
  19. Lin, Y.L., Cheng, X.M., Yang, G.L. and Li, Y. (2018b), "Seismic response of a sheet-pile wall with anchoring frame beam by numerical simulation and shaking table test", Soil Dyn. Earthq. Eng., 115, 352-364. http://doi.org/10.1016/j.soildyn.2018.07.028.
  20. Lin, Y.L., Leng, W.M., Yang, G.L., Li, L. and Yang, J.S. (2015a), "Seismic response of embankment slopes with different reinforcing measures in shaking table tests", Nat. Hazard., 76(2), 791-810. http://doi.org/10.1007/s11069-014-1517-5.
  21. Lin, Y.L., Leng, W.M., Yang, G.L., Zhao, L.H., Li, L. and Yang, J.S. (2015b), "Seismic active earth pressure of cohesive-frictional soil on retaining wall based on a slice analysis method", Soil Dyn. Earthq. Eng., 70, 133-147. http://doi.org/10.1016/j.soildyn.2014.12.006.
  22. Lin, Y.L., Li, Y.X., Yang, G.L. and Li, Y. (2017a), "Experimental and numerical study on the seismic behavior of anchoring frame beam supporting soil slope on rock mass", Soil Dyn. Earthq. Eng., 98, 12-23. http://doi.org/10.1016/j.soildyn.2017.04.008.
  23. Lin, Y.L., Li, Y.X., Zhao, L.H. and Yang, T.Y. (2020a), "Investigation on the seismic response of a three-stage soil slope supported by the anchor frame structure", J. Cent. South Univ., 27(4), 1290-1305. http://doi.org/10.1007/s11771-020-4367-1.
  24. Lin, Y.L., Lu, L. and Yang, G.L. (2020b), "Seismic behavior of a single-form lattice anchoring structure and a combined retaining structure supporting soil slope: A comparison", Environ. Earth Sci., 79(3), 78. https://doi.org/10.1007/s12665-020-8817-8.
  25. Lin, Y.L., Lu, L., Li, Y.X., Xue, Y., Feng, Z.J., Wang, Z.M. and Yang, G.L. (2020c), "On determining seismic anchor force of anchoring frame structure supporting three-stage slope", Geomech. Eng., 22(3), 265-275. https://doi.org/10.12989/gae.2020.22.3.265.
  26. Lin, Y.L., Shi, F., Yang, X., Yang, G.L. and Li, L.M. (2016), "Numerical analysis on seismic behavior of railway earth embankment: A case study", J. Cent. South Univ., 23(4), 906-918. http://doi.org/10.1007/s11771-016-3138-5.
  27. Lin, Y.L., Yang, G.L., Yang, X., Zhao, L.H., Shen, Q. and Qiu, M.M. (2017b), "Response of gravity retaining wall with anchoring frame beam supporting a steep rock slope subjected to earthquake loading", Soil Dyn. Earthq. Eng., 92, 633-649. http://doi.org/10.1016/j.soildyn.2016.11.002.
  28. Lin, Y.L., Yang, X., Yang, G.L., Li, Y. and Zhao, L.H. (2017c), "A closed-form solution for seismic passive earth pressure behind a retaining wall supporting cohesive-frictional backfill", Acta Geotech., 12(2), 453-461. http://doi.org/10.1007/s11440-016-0472-6.
  29. Lin, Y.L., Zhao, L.H., Yang, T.Y., Yang, G.L. and Chen X.B. (2020d), "Investigation on seismic behavior of combined retaining structure with different rock shapes", Struct. Eng. Mech., 73(5), 599-612. https://doi.org/10.12989/sem.2020.73.5.599.
  30. Manica, M., Ovando, E. and Botero, E. (2014), "Assessment of damping models in FLAC", Comput. Geotech., 59, 12-20. https://doi.org/10.1016/j.compgeo.2014.02.007.
  31. Masini, L., Callisto, L. and Rampello, S. (2015), "An interpretation of the seismic behaviour of reinforced-earth retaining structures", Geotechnique, 65(5), 349-358. https://doi.org/10.1680/geot.SIP.15.P.001.
  32. Mayoral, J.M. and Ramirez, J.Z. (2011), "Site response effects on an urban overpass", Soil Dyn. Earthq. Eng., 31(5-6), 849-855. https://doi.org/10.1016/j.soildyn.2011.01.010.
  33. Ng, C.W.W., Shi, J.W., Masin, D., Sun, H.S. and Lei, G.H. (2015), "Influence of sand density and retaining wall stiffness on three-dimensional responses of tunnel to basement excavation", Can. Geotech. J., 52(11), 1811-1829. https://doi.org/10.1139/cgj2014-0150.
  34. Paulsen, S.B. and Kramer, S.L. (2004), "A predictive model for seismic displacement of reinforced slopes", Geosynth. Int., 11(6), 407-428. https://doi.org/10.1680/gein.11.6.407.54389.
  35. Tang, L., Cong, S.Y., Ling, X.Z. and Ju, N.P. (2017), "The boundary conditions for simulations of a shake-table experiment on the seismic response of 3D slope", Earthq. Eng. Eng. Vib., 16(1), 23-32. https://doi.org/10.1007/s11803-016-0363-8.
  36. Tricarico, M., Madabhushi, G.S.P. and Aversa, S. (2016), "Centrifuge modelling of flexible retaining walls subjected to dynamic loading", Soil Dyn. Earthq. Eng. 88, 297-306. https://doi.org/10.1016/j.soildyn.2016.06.013.
  37. Wang, K.L. and Lin, M.L. (2011), "Initiation and displacement of landslide induced by earthquake-a study of shaking table model slope test", Eng. Geol., 122, 106-114. https://doi.org/10.1016/j.enggeo.2011.04.008.
  38. Wang, L.P. and Zhang, G. (2014), "Centrifuge model test study on pile reinforcement behavior of cohesive soil slopes under earthquake conditions", Landslid., 11(2), 213-223. https://doi.org/10.1007/s10346-013-0388-2.
  39. Xu, C., Luo, M.M., Shen, P.P., Han, J. and Ren, F.F. (2020b), "Seismic performance of a whole Geosynthetic Reinforced Soil-Integrated Bridge System (GRS-IBS) in shaking table test", Geotext. Geomembr., 48(3), 315-330. https://doi.org/10.1016/j.geotexmem.2019.12.004.
  40. Xu, P., Hatami, K. and Jiang, G. (2020a), "Shaking table study of the influence of facing on reinforced soil wall connection loads", Geosynth. Int., 27(4), 364-378. https://doi.org/10.1680/jgein.20.00001.
  41. Yang, S.C., Gao, Y.F., Cui, K., Zhang, F. and Wu, D. (2020), "Three-dimensional internal stability analysis of geosynthetic-reinforced earth structures considering seismic loading", Soil Dyn. Earthq. Eng., 130, 105979. https://doi.org/10.1016/j.soildyn.2019.105979 .
  42. Yazdandoust, M. (2017), "Investigation on the seismic performance of steel-strip reinforced-soil retaining walls using shaking table test", Soil Dyn. Earthq. Eng., 97, 216-232. https://doi.org/10.1016/j.soildyn.2017.03.011.
  43. Yazdandoust, M. (2019a), "Assessment of horizontal seismic coefficient for three different types of reinforced soil structure using physical and analytical modeling," Int. J. Geomech., 19(7), 04019070. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001344.
  44. Yazdandoust, M. (2019b), "Shaking table modeling of MSE/soil nail hybrid retaining walls", Soil. Found., 59(2), 241-252. https://doi.org/10.1016/j.sandf.2018.05.013.
  45. Yazdandoust, M., Panah, A.K. and Ghalandarzadeh, A. (2019), "Effect of reinforcing technique on strain-dependent dynamic properties of reinforced earth walls", Soil. Found., 59(4), 1001-1012. https://doi.org/10.1016/j.sandf.2019.04.005.