DOI QR코드

DOI QR Code

Smart Streetlight based on Accident Recognition using Raspberry Pi Camera OpenCV

라즈베리파이 카메라 OpenCV를 활용한 사고 인식 기반 스마트 가로등

  • 김동진 (남서울대학교 전자공학과) ;
  • 최원석 (남서울대학교 전자공학과) ;
  • 주성표 (남서울대학교 전자공학과) ;
  • 유승민 (남서울대학교 전자공학과) ;
  • 최재용 (남서울대학교 전자공학과) ;
  • 박형근 (남서울대학교 전자공학과)
  • Received : 2022.10.12
  • Accepted : 2022.12.17
  • Published : 2022.12.31

Abstract

In this paper, we studied accident-aware smart streetlights to prevent secondary accidents when driving on highways. It used Arduino and sensors to inform drivers of weather conditions, incorporated functions such as LED brightness control according to sunlight and night driving vehicles, and used Raspberry Pi camera OpenCV to learn various traffic accidents, natural disasters, and wildlife.

본 논문에서는 고속도로에서 주행시 2차 사고를 방지하기 위한 사고인식 스마트 가로등에 대해 연구하였다. 가로등에 아두이노 및 센서를 활용하여 운전자에게 기상 상태를 알리고, 햇빛 및 야간 주행 차량에 따른 LED 밝기 조절과 같은 기능을 삽입하였고, 라즈베리파이 카메라 OpenCV를 활용해 텐서플로우 라이트 프로그램을 이용하여 각종 교통사고, 자연재해 및 야생동물 출현을 Deep Learning을 한 후 그 장면들을 인식하여 고속도로에서 일어날 수 있는 사고들을 감지하여 운전자에게 알려주며 각종 2차 사고를 예방하는 것을 보였다.

Keywords

References

  1. Y. Baik, "Expected role of smart street lighting solution for smart city development," In Proc. Korean Institute of Illuminating and Electrical Installation Engineers Annual Spring Conf., Hoengseong, Korea, May 2018, pp. 6.
  2. H. Mok, J. Lee, D. Han, J. Park, and D. Kim, "Establishment of Traffic Safety measures based on Accident Risk Idex(ex-ARI)," In Proc. Korean Society of Civil Engineers Conf., Gwangju, Korea, Oct. 2021, pp. 506-507.
  3. K. Cho and A. Kim, "Development of Road Kill Preventive Guidance System," In Proc. Korean Society of Computer Information, Gumi, Korea, Jan. 2019, pp. 217-218.
  4. C. Kim and J. Hong, "An Analysis of Community Flood Resilience with a Focus on Flood Damage Characteristics," J. of the Korea Environmental Policy and Society, vol. 29, no. 3, Sep. 2021, pp. 225-252.
  5. J. Kang and N. Ku, "Verification of Resistance Welding Quality Based on Deep Learning," J. of the Society of Naval Architects of Korea, vol. 56, no. 6, Dec. 2019, pp. 473-479. https://doi.org/10.3744/SNAK.2019.56.6.473
  6. S. Park, W. Kim, and C. Kim, "Road Kill Prevention Smart Street Light," In Proc. Korean Institute of Illuminating and Electrical Installation Engineers Annual Autumn Conf., Jeju, Korea, Nov. 2020, pp. 117-120.
  7. J. Kang and C. Jung, "Evaluation of Urban Freeway Traffic Management Strategies Using Variable Message Signs," J. of the Korea Society of Transportation, vol. 17, no. 1, 1999, pp. 91-102.
  8. C. Yoon, "The study of Authorized / Unauthorized Vehicle Recognition System using Image Recognition with Neural Network," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 2, 2020, pp. 299-306. https://doi.org/10.13067/JKIECS.2020.15.2.299
  9. D. Kim and S. Kim, "A Study on Risk Situation Recognition Using OpenCV," J. of the Korea Institute of Electronic Communication Sciences, vol. 16, no. 2, 2021, pp. 211-218. https://doi.org/10.13067/JKIECS.2021.16.2.211
  10. G. Jeon, T. Kim, H. Lee, and J. Jang, "Dynamic Traffic Information Provision and Dismissal Strategy for Before and After Traffic Incident," J. of the Korea Institute of Electronic Communication Sciences, vol. 16, no. 5, 2021, pp. 867-878. https://doi.org/10.13067/JKIECS.2021.16.5.867
  11. D. Yun and M. Moon, "Development of Kid Height Measurement Application based on Image using Computer Vision," J. of the Korea Institute of Electronic Communication Sciences, vol. 16, no. 1, 2021, pp. 117-124. https://doi.org/10.13067/JKIECS.2021.16.1.117