DOI QR코드

DOI QR Code

수중 예인 소나용 케이블 설계 및 성능에 대한 연구

A Study on Design and Performance Test for Underwater Towing Sonar Cable

  • 나재현 (국방기술진흥연구소) ;
  • 홍의창 ((주)킴스유비큐 기술연구소) ;
  • 김승천 ((주)킴스유비큐 기술연구소) ;
  • 김동길 (경일대학교 기계자동차학부)
  • 투고 : 2022.10.20
  • 심사 : 2022.12.17
  • 발행 : 2022.12.31

초록

예인케이블은 예인음탐기(TASS: Towed Array Sonar System)를 윈치(Winch)를 이용하여 수중으로 반복전개, 회수하여 수중에서 음탐기로 탐지된 신호(정보)를 탐사선 또는 수상함으로 전달하고 예인음탐기에 전원공급하는 역할을 한다. 예인케이블은 세부적으로 중량케이블과 경량케이블로 구성된다. 음탐기용 예인케이블은 운용 심도가 깊어질수록 수중 환경이 열악하여 높은 기계적 특성과 내구성이 요구되는 특징이 있다. 이러한 제약사항으로 인하여 국내에서 설계 및 제작된 사례는 극히 드문 실정이다. 본 연구를 통해 확보된 광통신 방식 예인케이블 설계에 대한 핵심기술은 방위산업 및 민간 분야에도 다양하게 활용될 것으로 기대된다.

The towing cable plays a role in dropping and salvaging the Towed Array Sonar System (TASS) into the water and transmitting the signal (information) detected by the sonar in the water to the probe or surface ship. The towing cable consists of a heavy cable and a lightweight cable in detail. The towing cable for sonar is characterized by high reliability and durability as the underwater environment deteriorates as the operating depth increases. Due to these restrictions, cases designed and manufactured in Korea are extremely rare. The core technology for towing cable design secured through this study is expected to be used in various ways in the defense industry and the private sector.

키워드

과제정보

이 논문은 2016년 핵심부품국산화 개발지원사업 예산에 의한 논문임

참고문헌

  1. D. Jung, J. Kim, and H. Park, "A Study on Three-Dimensional Dynamic Analysis of a Towing Cable for Marine Survey Instruments," Korea Ocean Science J., vol. 8, no. 2, 2003, pp. 203-209.
  2. G. Go, E. Lee, and H. Ahn, "3D Nonlinear Fully Coupled Simulation of Cable and Tow-fish System," J. of Ocean Engineering and Technology, vol. 30, no. 6, 2016, pp. 458-467. https://doi.org/10.5574/KSOE.2016.30.6.458
  3. E. Lee, G. Go, H. Ahn, S. Kim, S. Chun, J. Kim, and B. Lee, "Nonlinear Analysis of Underwater Towed Cable Using Robust Nodal Position Finite Element Method," J. of the Society of Naval Architects of Korea, vol. 53, no. 5, 2016, pp. 388-399. https://doi.org/10.3744/SNAK.2016.53.5.388
  4. S. Yang, J. Kim, C. Kim, and J. Lee, "Development of Cable for Towed Array Sonar System," J. of the Korea Institute of Military Science and Technology, vol. 19, no. 5, 2016, pp. 559-566. https://doi.org/10.9766/KIMST.2016.19.5.559
  5. H. Son, C. Moon, and D. Kim, "Design of Submarine Cable for Capacity Extension of Power Line," J. of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 1, 2022, pp. 77-84.
  6. Y. Im, P. Lim, J. Lee, and C. Kim, "Interface Effect Analysis between Undersea Fiber Optic Cable and Underwater Acoustic channel," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 9, 2015, pp. 979-986. https://doi.org/10.13067/JKIECS.2015.10.9.979
  7. M. Joo, C. Lim, and H. Park, "A Study on the Calculation of Allowable Continuous Current for HVDC Submarine Power Cables," J. of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 05 2022, pp. 815~824.
  8. K. Inagaki, J. Ekh, and S. Zahrai, "Mechanical Analysis of Second Order Helical Structure in Electrical Cable," Int. J. of Solids and Structures, vol. 44, no. 5, 2007, pp. 1657-1679. https://doi.org/10.1016/j.ijsolstr.2006.06.045
  9. N. Takato and N. Osamu, "Latest Technologies and the OCC-SC300 Optical Submarine Cable," Fundamental Technologies and Devices, vol. 5, 2010, pp. 18-22.
  10. S. Gong, B. Sun, S. Bao, and Y. Bai, "Buckle propagation of offshore pipelines under external pressure," Marine Structures, vol. 29, no. 1, 2012, pp. 115-130. https://doi.org/10.1016/j.marstruc.2012.10.006