DOI QR코드

DOI QR Code

광학기법을 이용한 비산 먼지 측정 시스템의 설계 및 구현

Design and Implementation of Fugitive Dust Measurement System using Optical Method

  • 반재훈 (고신대학교 의료경영학부) ;
  • 손현근 (고신대학교 보건환경학부)
  • 투고 : 2022.10.20
  • 심사 : 2022.12.17
  • 발행 : 2022.12.31

초록

대기오염물질인 미세먼지의 50% 이상을 차지하고 있는 비산먼지는 건설공사가 주요 배출원(29.5%)으로 이에 대한 관리를 위하여 비산먼지 억제를 위한 시설 설치 및 조치에 관한 기준을 법으로 제시하고 있다. 그러나 소규모 건설현장은 관리 대상기준이 아니며 건설현장에서 발생하는 비산먼지를 개량적으로 측정하여 조치하는 항목이 미흡하다. 본 논문에서는 비산먼지를 더욱 쉽게 측정하고 모니터링하기 위하여 먼지의 혼탁도를 측정하는 광학기법을 사용한 방법을 설계하고 구현하였다. 먼저 광학기법을 이용한 비산먼지의 혼탁도를 측정하는 방법을 제시하고 비산먼지측정 시스템을 구현하여 건설현장에서 발생하는 실제 비산먼지의 혼탁도를 측정하였다.

Fugitive dust, which accounts more than 50% of fine dust, is an air pollutant, that is generated by a lot in construction work(29.5%) and the law provides standards for facility installation and measures to control this. However, small-scale construction sites are not subject to management standards, and the law to measure and manage fugitive dust generated from construction sites is insufficient. In this paper, we designed and implemented the method to easily measure and monitor fugitive dust using the digital optical method for turbidity of dust. We presented the method to measure the turbidity of fugitive dust using the digital optical method and measured the actual turbidity of fugitive dust at the construction sites after implementing the fugitive dust measurement system.

키워드

참고문헌

  1. K. Yoon and D. Seo, "A Study on the Smart Filter System for External Environment Recognition," J. of the Korea Institute of Electronic Communication Sciences, vol. 16, no. 3, 2021, pp. 551-558. https://doi.org/10.13067/JKIECS.2021.16.3.551
  2. National Air Emission Inventory and Research Center, "2019 National Air Pollutants Emission," Technical report, 2022.
  3. M. McFarland, S. Rasmussen, D. Stone, G. Palmer, A. Olivas, J. Wander, and M. Spencer, "Field Demonstration of Visible Opacity Photographic System," J. of the Air & Waste Management Association, vol. 57, no. 1, 2007, pp. 31-38. https://doi.org/10.1080/10473289.2007.10465297
  4. K. Du, M. Rood, B. Kim, M. Kemme, B. Franek, and K. Mattison, "Evaluation of Digital Optical Method To Determine Plume Opacity during Nighttime," Environ. Sci. Technol, vol. 43, no. 3, 2009, pp. 783-789. https://doi.org/10.1021/es800483x
  5. K. Du, M. Rood, B. Kim, M. Kemme, B. Franek, and K. Mattison, "Digital Photographic Technique to Quantify Plume Opacity During Daytime and Nighttime," Atmospheric and Biological Environmental Monitoring, Heidelberg: Springer, 2009, pp. 39-50.
  6. C. Ban, "Design and Implementation of Turbidity Measurement Module of Plume using a Digital Camera," J. of the Korea Institute of Information and Communication Engineering, vol. 19, no. 2, 2015, pp. 372-378. https://doi.org/10.6109/JKIICE.2015.19.2.372
  7. C. Ban, "Design and Implementation of Turbidity Measurement Module of Plume using a Mobile Device," J. of the Korea Institute of Information and Communication Engineering, vol. 19, no. 11, 2015, pp. 2623-2628. https://doi.org/10.6109/JKIICE.2015.19.11.2623
  8. C. Ban and H. Son, "Design of Turbidity Measurement of White Plume using Optical Method," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 6, 2020, pp. 1195-1200. https://doi.org/10.13067/JKIECS.2020.15.6.1195
  9. S. Im and J. Yu, "Analysis of Fugitive Dust Measurement Technique for Fugitive Dust Management in Construction Site," Conf. of Korea Architectural Institute, Seoul, Korea, 2018, pp. 672-673.
  10. H. Noh and J. Yu, "Improvement Plan of Fugitive Dust Regulations in Construction Site," J. of Korean Construction Engineering and Management, vol. 18, no. 5, 2017, pp. 68-76.