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High-Speed Transformer for Panoptic Segmentation
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Abstract

Recent high-performance panoptic segmentation models are based on transformer architectures. However, transformer-based 
panoptic segmentation methods are basically slower than convolution-based methods, since the attention mechanism in the 
transformer requires quadratic complexity w.r.t. image resolution. Also, sine and cosine computation for positional embedding in 
the transformer also yields a bottleneck for computation time. To address these problems, we adopt three modules to speed up the 
inference runtime of the transformer-based panoptic segmentation. First, we perform channel-level reduction using depth-wise 
separable convolution for inputs of the transformer decoder. Second, we replace sine and cosine-based positional encoding with 
convolution operations, called conv-embedding. We also apply a separable self-attention to the transformer encoder to lower 
quadratic complexity to linear one for numbers of image pixels. As result, the proposed model achieves 44% faster frame per 
second than baseline on ADE20K panoptic validation dataset, when we use all three modules. 

Keywords : Panoptic segmentation, Transformer

I. Introduction

The transformer[1] has been widely adopted in many 
state-of-the-art models. The core of the transformer, the at-

tention mechanism, allows neural networks to exploit glob-
al information effectively and improves many vision tasks, 
such as image classification[2], object detection[3], and se-
mantic segmentation[4] on various benchmark datasets. 
Recently, the transformer is also used in panoptic segmen-
tation[5] and has achieved remarkable improvements in the 
panoptic segmentation field. Despite such advances, the at-
tention mechanism in the transformer demands the high 
computational complexity, and this yields the bottleneck 
for inference. There are two main issues for the high com-
putational complexity. First, the self-attention in the trans-
former has the quadratic complexity with respect to the 
number of image pixels. Thus, the transformer-based pan 
optic segmentation methods are weak to high-resolution 
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images in terms of inference speed. Second, the positional 
encoding[1] based on sine and cosine computation in the 
original transformer is also the problem for slow inference 
speed. To address this problem, some works tried to lower 
the complexity of the attention mechanism. For example, 
Axial-Deeplab[6] computes attention along the height and 
width axis, respectively. Also, MobileViTv2[7] reduces the 
computation cost of attention. Moreover, it does not even 
use the positional encoding. 

To utilize transformer-based panoptic segmentation in re-
al-world applications such as MPEG video coding for machine, 
efficient models are essential. In this work, we introduce three 
models to achieve high-speed panoptic segmentation. First, we 
use a depth-wise separable convolution[8] to reduce the channel 
dimensions of image features for the transformer decoder. The 
depth-wise separable convolution can effectively reduce the 
computational complexity in the transformer decoder without 
any performance degradation. Second, we replace sine and co-
sine-based positional embedding in the original transformers 
with a convolution layer, called conv-embedding, in the trans-
former encoder and decoder. The simple convolution layer can 
extract the positional information, and thus it substitutes the 
traditional positional embedding. We also further reduce the 
complexity of the attention using the separable attention[7] for 
transformer encoder. Experimental results demonstrate that 
these three modules efficiently improve inference speed of 
MaskFormer[9] on the ADE20K panoptic segmentation dataset.  

      

II. Related works

1. Efficient Vision Transformer

Recently, there are some efficient vision transformer models 
to improve the inference speed. For the classification task, 
EfficientFormer[10] applied vision transformers to the 
light-weight backbone models such as MobileNet[8]. However, 
EfficientFormer employed the original attention module, and 

thus it suffered from the quadratic complexity in the attention 
process. MobileViT[11] used inter-patch attention, unfolding, and 
folding structure to connect local information and global in-
formation, but it was still slower than MobileNetv2[12]. 
MobileViTv2[7], which is an extension of MobileViT, developed 
a separable self-attention to decrease the computational com-
plexity of the traditional attention mechanism. For semantic seg-
mentation, Top-Former[13] used the average pooling operator to 
reduce the computational costs for various scale inputs.  

2. Panoptic segmentation

Segmentation is one of the most important areas in the 
field of computer vision. Segmentation has various tasks 
such as semantic segmentation, instance segmentation, and 
panoptic segmentation. Semantic segmentation is a method 
of assigning classes to all pixels of an image, and instance 
segmentation is a method of determining whether each pix-
el in an image is an object. Panoptic segmentation unifies 
the above two tasks and defines ideal outputs for thing 
classes as instance segmentations and for stuff classes as 
semantic segmentation. 

First, Kirillov et al.[14] proposed the heuristic method, 
which combines independently obtained semantic segmen-
tation and instance segmentation results, to assign class la-
bels to each pixel. Bowen Cheng et al.[15] presented an 
end-to-end model, called Panoptic DeepLab, which consists 
of a semantic head, instance center head, and regression 
head. It determines stuff classes based on the semantic head 
while finding instance locations by selecting instance centers. 
Recently, transformer-based approaches have been developed 
in panoptic segmentation. DETR[16], which is the first end-to- 
end model based on the transformer in object detection, con-
structed queries for thing and stuff classes and it performed 
object detection through the attention mechanism of the 
learnable queries and image features.  Then, DETR extracted 
segmentation results from the detected boundingboxes. 
Unlike DETR requires two-stage process to obtain panoptic 



Jong-Hyeon Baek et al.: High-Speed Transformer for Panoptic Segmentation   1013

Fig. 1. Overview of the proposed network

segmentation, MaskFormer proposed a new approach to con-
vert any per-pixel classification model into mask 
classification. The model also adopted the transformer de-
coder to extract class prediction and mask embedding vectors 
for thing and stuff queries. However, transformers in 
MaskFormer require the high computational complexity that 
reduces the inference speed. In this work, we introduce three 
modules to improve the inference runtime of MaskFormer.

III. Proposed Methods 

In this section, we introduce three modules, a depth- 
wise separable convolution module, a convolution embed-
ding module, and a separable attention module[7], which re-
duce inference runtime of transformer-based panoptic 
segmentation. In this work, we employ MaskFormer as the 
baseline and add the three modules to the baseline. The 
depth-wise separable convolution module applies chan-
nel-level reduction, the separable attention module re-
duces the computational complexity in the transformer en-
coder, and the convolution embedding module improves 
the computation speed as compared with the positional 

encoding. Figure. 1 illustrates an overview of the pro-
posed network.

1. Depth-wise Separable Convolution

The depth-wise separable convolution focuses on re-
ducing the channel dimension of inputs (query, key, and 
value) of multi-head cross attention in the transformer 
decoder. For this purpose, the image feature  ′∈ 

ℝ


×


×

, extracted from the transformer encoder, passes 
through the depth-wise separable convolution to form a re-

duced feature R∈ℝ


×


× 



. Here,  × is a spatial 
resolution and   is a feature dimension. The depth-wise 
separable convolution consists of two layers: the first layer 
is depth-wise convolution and the second layer is 
point-wise convolution. In depth-wise convolution,  one fil-
ter is applied to on only one channel. This operation re-
duces the computational complexity. Point-wise con-
volution is a convolution with a × kernel size to reduce 
the number of channel dimensions and combine the in-
formation on image features, extracted from depth-wise 
convolution. Then, the feature R is transformed into the 
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Fig. 3. The convolution embedding in the transformer encoder and transformer decoder

Fig. 2. Diagram of the depth-wise separable convolution
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 for multi-head self-attention, and 

then the query Q∈ℝ× 



 is obtained to perform cross at-
tention with K and V. 

2. Convolution Embedding

In general, positional encoding is employed in the trans-
former encoder and decoder to inject relative position in-
formation in images. In the baseline, positional encoding 
adopts sine and cosine functions to obtain positional em-

beddings P∈ℝ


×


×

 for x and y coordinates 
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Fig. 4. The process of the separable attention

P

 sin P

 cos

P

 sin P
 cos

(1)

where  and  are normalized absolute coordinates in the 
input feature. Pcan be simply computed, but we ex-
perimentally observe that the sine and cosine computation 
require a high computational complexity as compared 
with convolution. Therefore, we replace positional encod-
ing with the convolution embedding that contains a × 
convolution layer, as shown in Figure 3. The convolution 
embedding takes image features F  and F′  as inputs for 
transformer encoder and decoder, respectively. Thus, us-
ing the convolution embedding, we can obtain two posi-
tional embeddings Pe and Pd for transformer encoder 
and decoder, respectively. 

3. Separable Attention

The transformer encoder in the baseline is designed to 
enhance image features. The original transformer encoder 
in the baseline consists of self-attention, layer normal-
ization, and multi-layer-perceptron. Since the input of 
self-attention contains image feature information extracted 
from the backbone, the size of the input greatly affects the 
inference speed. Therefore, we replaced the self-attention 
in the original transformer encoder with the separable at-
tention[7] in Figure 4, which can improve the inference 
speed by reducing the computation in attention processes. 

As in Equation (2), the general attention requires quad-
ratic complexity with regard to image resolutions:

AttentionQKV  softmax
QK

V (2)

In contrast, the separable attention makes feature di-
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Fig. 5. ADE20K panoptic dataset

mension for each pixel in query Q  to scalar 1 to obtain 
context scores ∈ℝ×. Then, using , a context vec-

tor  is computed by a weighed sum of key K as

 ∑  
 K (3)

Finally, value V  is updated by broadcasted element-wise 
multiplication with . By reducing dimension to scalar 1 
for , the computation cost for attention is reduced from 

    to  .  

4. Segmentation module

Using learnable parameters D∈ℝ×, extracted from 
the transformer decoder, the segmentation module predicts 

N class prediction features T∈ℝ×   containing the 

class information and N Mask prediction features 

Td∈ℝ× . To generate N mask logits M∈ℝ××, 

it performs a dot product operation between per-pixel em-
beddings Fd∈ℝ××, which is obtained from the pixel 

decoder, and N mask prediction features Td. Finally, the 
panoptic segmentation is predicted through the post-proc-
essing process that takes N class predictions and N mask 
logits as inputs and generates a mask with the highest prob-
ability value without duplication.

Ⅳ. Experimental results

1. Dataset and Metric

To validate the proposed network, we use the ADE20K 
panoptic dataset. ADE20K contains 20,210 images for 
training and 2,000 images for validation. It has 100 classes 
for things and 50 classes for stuff. Figure 5 shows examples 
of pairs of images and labels. For the metric, we use the 
standard PQ[14] metric. PQ is composed of segmentation 
quality (SQ) and recognition quality (RQ). SQ is the average 
IoU of matched segments and RQ is F1 score for quality esti-
mation in class and mask. Thus, PQ is defined as 
PQ SQ×RQ  

2. Implementation Details and Training Settings

For the baseline, we use the same structure and hyper-
parameters to MaskFormer[9]. Also, we use the same loss 
to the baseline, which is composed of cross-entropy loss, 
mask loss, and dice loss. For the backbone, we employ 
ResNet50[17] with pre-trained weights from the baseline. 
For training, input images are randomly cropped and flip-
ped horizontally and vertically. We train the network dur-
ing 200 epochs with a batch size of 8 using four RTX 
A6000 GPUs. We employ the AdamW[18] optimizer and the 
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PQ fps #Params

Baseline 34.7 34.96 45M

 + Depth-wise separable convolution 34.7 38.91 44M

 ++ Conv-embedding in the transformer decoder 35.8 42.01 45M

 +++ Conv-embedding in the transformer encoder 35.4 44.23 45M

 ++++ Separable attention 30.6 50.5 38M

Table 1. Performance according to three modules on ADE20K Dataset

poly learning rate schedule with an initial learning rate of 
 and a weight decay of .  

3. Experimental Results on ADE20K

We perform experiments by adding the depth-wise 
separable convolution, convolution embedding, and sep-
arable attention modules to the baseline sequentially. 
Table 1 shows PQ scores and frame per second (fps) ac-
cording to those three modules on ADE20K. Fps is 
measured on a RTX A6000 GPU with a batch size of 
1 by computing the average runtime on the entire vali-
dation set. Also, the runtime includes the time to per-
form the post-processing. First, as compared with the 
baseline, the depth-wise separable convolution () im-

proves the inference runtime about 11% without any per-
formance degradation. Also, when the convolution em-
bedding is applied to the transformer decoder only, set-
ting  provides the best PQ score and the higher fps 

than the baseline. Next, when we use the convolution 
embedding to both transformer encoder and decoder, we 
observe that setting  yields the best trade-off between 

the performance and runtime. This case outperforms the 
baseline by 0.7 PQ and 9.7fps. Finally, in setting , the 

separable attention extremely boosts the inference speed 
and requires the smallest number of parameters, but it 
degrades the PQ performance.

Figure 6 shows the trade-off between performance, 
speed, and network complexity. As compared with the 
baseline, settings  and  reduce runtime, while in- 
creasing PQ scores. This indicates that the proposed con-
volution embedding demands the lower computational 
complexity than the positional embedding, but it yields 
more effective features for panoptic segmenta- tion. By re-
placing sign and cosine operations with the simple con-
volution operation, we achieve the remarkable trade-off be-
tween performance and runtime. Setting  significantly re-
duces the number of network parameters and operations, 
but it produces the lowest performance due to the restricted 
network capacity. 

Fig. 6. A ball chart for PQs vs. fps of various proposed settings, in
which a ball size indicates the number of network parameters. The
PQs and fps are measured on the ADE20K dataset
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Fig. 7. (a): images in ADE20K, Panoptic segmentation results of (b) the baseline and (c): the proposed model with the 
depth-wise separable convolution and Conv-embedding

Table 2 compares the performance of setting with the exist-
ing methods: MaskFormer[9], BGRNet[19], Auto- Panoptic[20], 
and Mask2Former[21]. Setting  outperforms MaskFormer in 
terms of both accuracy and runtime. Also,  provides the high-
er PQ score than BGRNet and Auto-Panoptic. Although  
yields the lower PQ than Msk2Former, it achieves the best 
running speed.

PQ fps #Params

MaskFormer[9] 34.7 34.96 45M

BGRNet[19] 31.8 - -

Auto-Panoptic[20] 32.4 - -

Mask2Former[21] 39.7 22.00 44M

        35.4 44.23 45M

Table 2. Performance comparison with the existing methods on the 
ADE20K dataset. 

Figure 7 qualitatively compares the proposed model with 
the baseline. For the proposed model, we select the model 
with the depth-wise separable convolution and Conv-em-
bedding, which shows the best trade-off between the per-
formance and the runtime. In Figure 7, we can observe that 

the proposed model provides good panoptic segmentation 
results as compared with the baseline.

Ⅴ. Conclusion

In this paper, we proposed the high-speed transformer 
for panoptic segmentation. First, we applied the depth-wise 
separable convolution to decrease feature dimensions of the 
transformer encoder output. Second, we substituted sine 
and cosine computation for positional encoding in the orig-
inal transformer with the conv-embedding in the trans-
former encoder and decoder. Finally, we adopted the sepa-
rable attention instead of the self-attention in the trans-
former encoder. Experimental results demonstrated that 
these three modules efficiently improve the inference speed 
of MaskFormer on the ADE20K panoptic segmentation 
dataset. In experimental results, we observed that the 
depth-wise separable convolution and conv-embedding on 
the transformer encoder and decoder provide the best 
trade-off between the performance and inference runtime, 
while the usage of three modules achieves the best in-
ference speed.
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